Synlett 2021; 32(08): 800-804
DOI: 10.1055/a-1387-5435
letter

Study on Palladium(II)-Catalyzed Mono-1-alkenylation of 9H-Carbazoles

Dongdong Guo
a   College of Arts and Sciences, Shanxi Agricultural University, Taigu 030801, P. R. of China
b   Department of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. of China
,
Bin Li
b   Department of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. of China
,
Wenmei Gao
a   College of Arts and Sciences, Shanxi Agricultural University, Taigu 030801, P. R. of China
,
Wuxia Zhang
a   College of Arts and Sciences, Shanxi Agricultural University, Taigu 030801, P. R. of China
,
Yongqiang Wang
b   Department of Chemistry & Materials Science, Northwest University, Xi’an 710069, P. R. of China
,
Jinzhong Zhao
a   College of Arts and Sciences, Shanxi Agricultural University, Taigu 030801, P. R. of China
› Author Affiliations
We are grateful for financial support from the National Natural Science Foundation of China (NSFC-31800678), the Science and Technology Research Project in Shanxi Province (Nos. 201801D221062), the Shanxi Excellent Doctor Grant Award (No. SXYBKY201737, SXYBKY201706), the Science and Technology Innovation Project of Shanxi Agricultural University (No. 2017YJ38, 2017YJ41, ZDPY201606, ZDPY201708, ZDPY201803), Shanxi Science and Technology Research Project (201703d, 221008-4), and Science and Technology Innovation Project of Shanxi (2019L0374).


Abstract

A general and efficient method is reported for the direct mono-1-alkenylation of 9H-carbazole molecules with divalent palladium as a catalyst and an N-(2-pyridyl)sulfanyl directing group. This method also provides an efficient synthetic route for the synthesis of cross-dialkenylated carbazoles.

Supporting Information

Primary Data



Publication History

Received: 17 December 2020

Accepted after revision: 09 February 2021

Accepted Manuscript online:
09 February 2021

Article published online:
30 March 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Schmidt AW, Reddy KR, Knölker H.-J. Chem. Rev. 2012; 112: 3193
  • 2 Roy J, Jana AK, Mal D. Tetrahedron 2012; 68: 6099
  • 3 Huang H, Wang Y, Pan B, Yang X, Wang L, Chen J, Ma D, Yang C. Chem. Eur. J. 2013; 19: 1828
  • 4 Antonchick AP, Samanta R, Kulikov K, Lategahn J. Angew. Chem. Int. Ed. 2011; 50: 8605
  • 5 Cho SH, Yoon J, Chang S. J. Am. Chem. Soc. 2011; 133: 5996
    • 6a Achar TK, Zhang X, Mondal R, Shanavas MS, Maiti S, Maity S, Pal N, Paton RS, Maiti D. Angew. Chem. Int. Ed. 2019; 58: 10353
    • 6b Bera M, Maji A, Sahoo SK, Maiti D. Angew. Chem. Int. Ed. 2015; 54: 8515
    • 6c Patra T, Bag S, Kancherla R, Mondal A, Dey A, Pimparkar S, Agasti S, Modak A, Maiti D. Angew. Chem. Int. Ed. 2016; 55: 7751
    • 6d Massimo B, Tania B, Sukdev B, Jana S, Maiti S, Porta A, Werz DB, Zanoni G, Maiti D. Chem. Eur. J. 2019; 25: 10323
    • 6e Achar TK, Ramakrishna K, Pal T, Porey S, Dolui P, Biswas JP, Maiti D. Chem. Eur. J. 2018; 24: 17906
    • 6f Deb A, Maiti D. Eur. J. Org. Chem. 2017; 2017: 1239
    • 6g Thrimurtulu N, Dey A, Singh A, Pal K, Maiti D, Volla CM. R. Adv. Synth. Catal. 2019; 361: 1441
    • 6h Bera M, Modak A, Patra T, Maji A, Maiti D, Deb A, Hazra A, Peng Q, Paton RS, Maiti D. J. Am. Chem. Soc. 2017; 139: 763
    • 6i Agasti S, Mondal B, Achar TK, Sinha SK, Suseelan SA, Szabo KJ, Schoenebeck F, Maiti D. ACS Catal. 2019; 9: 9606
    • 6j Seth K, Bera M, Brochetta M, Agasti S, Das A, Gandini A, Porta A, Zanoni G, Maiti D. ACS Catal. 2017; 7: 7732
    • 6k Bera M, Modak A, Patra T, Maji A, Maiti D. Org. Lett. 2014; 16: 5760
    • 6l Achar TK, Biswas JP, Porey S, Pal T, Ramakrishna K, Maiti S, Maiti D. J. Org. Chem. 2019; 84: 8315
    • 6m Dutta U, Maiti S, Pimparkar S, Maiti S, Gahan LR, Krenske EH, Lupton DW, Maiti D. Chem. Sci. 2019; 10: 7426
    • 6n Maity S, Dolui P, Kancherlaa R, Maiti D. Chem. Sci. 2017; 8: 5181
    • 6o Modak A, Mondal A, Watile R, Mukherjee S, Maiti D. Chem. Commun. 2016; 52: 13916
    • 6p Patra T, Watile R, Agasti S, Naveen T, Maiti D. Chem. Commun. 2016; 52: 2027
    • 6q Maity S, Hoque E, Dhawa U, Maiti D. Chem. Commun. 2016; 52: 14003
    • 6r Agasti S, Sharma U, Naveen T, Maiti D. Chem. Commun. 2015; 51: 5375
    • 6s Bag S, Maiti D. Synthesis 2016; 48: 804
    • 6t Ali W, Prakash G, Maiti D. Chem. Sci. 2021; in press DOI: 10.1039/d0sc05555g.
  • 7 White MC. Science 2012; 335: 807
  • 8 Ackermann L. Acc. Chem. Res. 2014; 47: 281
  • 9 García-Rubia A, Urones B, Arrayás RG, Carretero JC. Chem. Eur. J. 2010; 16: 9676
    • 10a Okada T, Nobushige K, Satoh T, Miura M. Org. Lett. 2016; 18: 1150
    • 10b Maiti S, Burgula L, Chakraborti G, Dash J. Eur. J. Org. Chem. 2017; 2017: 332
    • 10c Reddy GM, Rao NS, Hariharasarma M. Asian J. Org. Chem. 2017; 6: 59
    • 10d Chu J.-H, Wu C.-C, Chang D.-H, Lee Y.-M, Wu M.-J. Organometallics 2013; 32: 272
    • 10e Zhu L, Cao X, Qiu R, Iwasaki T, Reddy VP, Xu X, Yin S, Kambe N. RSC Adv. 2015; 5: 39358
    • 10f Zhang L.-Q, Yang S, Huang X, You J, Song F. Chem. Commun. 2013; 49: 8830
  • 11 Urones B, Arrayás RG, Carretero JC. Org. Lett. 2013; 15: 1120
  • 12 Engle KM, Mei T.-S, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
  • 13 Gao K, Yoshikai N. Chem. Commun. 2012; 48: 4305
  • 14 Ackermann L, Diers E, Manvar A. Org. Lett. 2012; 14: 1154
  • 15 Fabry DC, Ronge MA, Zoller J, Rueping M. Angew. Chem. Int. Ed. 2015; 54: 2801
  • 16 Bechtoldt A, Tirler C, Raghuvanshi K, Warratz S, Kornhaaß C, Ackermann L. Angew. Chem. Int. Ed. 2016; 55: 264
  • 17 CCDC 1940572 contains the supplementary crystallographic data for compound 3b. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
  • 18 Li B, Guo D.-D, Guo S.-H, Pan G.-F, Gao Y.-R, Wang Y.-Q. Chem. Asian J. 2017; 12: 130
    • 19a Li G, Liu Q, Vasamsetty L, Guo W, Wang J. Angew. Chem. Int. Ed. 2020; 59: 3475
    • 19b Lan J, Xie H, Lu X, Deng Y, Jiang H, Zeng W. Org. Lett. 2017; 19: 4279
    • 19c Sen M, Emayavaramban B, Barsu N, Premkumar JR, Sundararaju B. ACS Catal. 2016; 6: 2792
    • 19d Ma W, Ackermann L. ACS Catal. 2015; 5: 2822
  • 20 Lu W, Yamaoka Y, Taniguchi Y, Kitamura T, Takaki K, Fujiwara Y. J. Organomet. Chem. 1999; 580: 290
  • 21 Li R, Jiang L, Lu W. Organometallics 2006; 25: 5973
  • 22 Jia C, Piao D, Oyamada J, Lu W, Kitamura T, Fujiwara Y. Science 2000; 287: 1992
  • 23 Li J.-J, Giri R, Yu J.-Q. Tetrahedron 2008; 64: 6979
  • 24 Rousseaux S, Davi M, Sofack-Kreutzer J, Pierre C, Kefalidis CE, Clot E, Fagnou K, Baudoin O. J. Am. Chem. Soc. 2010; 132: 10706
  • 25 Leow D, Li G, Mei T.-S, Yu J.-Q. Nature 2012; 486: 518
  • 26 Wang D.-H, Engle KM, Shi B.-F, Yu J.-Q. Science 2010; 327: 315
  • 27 García-Rubia A, Urones B, Arrayás RG, Carretero JC. Angew. Chem. Int. Ed. 2011; 50: 10927
  • 28 Grimster NP, Gauntlett C, Godfrey CR. A, Gaunt MJ. Angew. Chem. Int. Ed. 2005; 44: 3125
  • 29 Djakovitch L, Rouge P. J. Mol. Catal. A: Chem. 2007; 273: 230
  • 30 1-Alkenyl-9H-carbazoles 3aj; General Procedure A sealed tube containing 9-(2-pyridylsulfonyl)-9H-carbazole (1a; 0.2 mmol) and Pd(OAc)2 (5.0 mg, 10 mol%) was evacuated and filled with O2 gas by using an O2-containing balloon. HFIP (2 mL), the appropriate alkene (0.4 mmol), and TFA (0.4 mmol) were sequentially added from a syringe under O2, and the mixture was heated at 60 °C for 14–16 h until the reaction was complete (TLC). The mixture was then allowed to cool to r.t., concentrated under reduced pressure, diluted with EtOAc (30 mL), and washed with sat. aq NaHCO3 (3 × 2 mL). The combined organic phase was (Na2SO4) and concentrated under reduced pressure, and the residue was purified by flash chromatography. Methyl (2E)-3-[9-(Pyridin-2-ylsulfonyl)-9H-carbazol-1-yl]acrylate (3a) Purified by flash column chromatography [silica gel, PE–EtOAc (3:1)] as a white solid; yield: 37.0 mg (95%); mp 171–172 °C. IR (KBr): 3027, 2951, 1702, 1578, 1429, 1406, 1359, 1272, 1182, 1116, 1031, 956, 860, 752, 663, 586 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.37 (d, J = 15.8 Hz, 1 H), 8.31 (d, J = 4.0 Hz, 1 H), 8.22 (d, J = 8.3 Hz, 1 H), 7.83–7.78 (m, 2 H), 7.74–7.70 (m, 2 H), 7.64 (d, J = 7.8 Hz, 1 H), 7.43–7.37 (m, 2 H), 7.32–7.27 (m, 2 H), 6.46 (d, J = 15.8 Hz, 1 H), 3.83 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 167.5, 154.5, 149.8, 144.0, 140.6, 139.3, 137.6, 130.1, 127.4, 126.0, 125.4, 125.2, 122.8, 121.1, 119.8, 118.5, 117.1, 51.7. HRMS (ESI): m/z [M + Na]+ calcd for C21H16N2NaO4S: 415.0723; found: 415.0721. Unsymmetrical Dialkenylated Carbazoles 3k–m; General Procedure A sealed tube was charged with the appropriate monoalkenylated carbazole 3 (0.2 mmol), Pd(OAc)2 (5.0 mg, 10 mol%), and K2S2O8 (108.0 mg, 0.4 mmol). DCE (2 mL) and the appropriate alkene (0.4 mmol) were added, and the mixture was heated to 90 °C for 24–26 h until the reaction was complete (TLC). The mixture was allowed to cool to r.t., diluted with EtOAc (50 mL), and washed with H2O (3 × 5 mL). The combined organic phase was dried (Na2SO4) and concentrated under reduced pressure and purified by flash chromatography. Methyl (2E)-3-[8-[(1E)-3-(Dimethylamino)-3-oxoprop-1-en-1-yl]-9-(pyridin-2-ylsulfonyl)-9H-carbazol-1-yl]acrylate (3k) Purified by flash column chromatography [silica gel, PE–EtOAc (3:1)] as an oil; yield: 44.9 mg (92%). IR (KBr): 3394, 3189, 2921, 2850, 1708, 1646, 1465, 1419, 1371, 1263, 1168, 1110, 869, 794, 727, 642, 572 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.51 (d, J = 16.0 Hz, 1 H), 8.22–8.19 (m, 2 H), 7.66–7.62 (m, 2 H), 7.60–7.49 (m, 3 H), 7.38–7.30 (m, 3 H), 7.25–7.22 (m, 1 H), 7.05 (d, J = 15.6 Hz, 1 H), 6.54 (d, J = 16.0 Hz, 1 H), 3.88 (s, 3 H), 3.27 (s, 3 H), 3.11 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 167.3, 152.6, 149.1, 141.9, 141.4, 138.8, 137.0, 132.0, 131.7, 129.3, 127.9, 127.1, 126.8, 126.5, 125.9, 123.3, 121.0, 120.2, 118.8, 118.1, 51.9, 37.8, 35.9. HRMS (ESI): m/z [M + Na]+ calcd for C26H23N3NaO5S: 512.1251; found: 512.1252. Methyl (2E)-3-(9H-carbazol-1-yl)acrylate (4a); Typical Procedure A suspension of 3a (39 mg, 0.1 mmol) and nonactivated Zn powder (325 mg, 5 mmol) in 1:1 THF–sat. aq NH4Cl (4 mL) was stirred at 30 ℃ until the starting material was consumed (TLC). The mixture was then filtered through a pad of Celite to remove the Zn powder, and the filtrate was extracted with EtOAc (15 mL). The extracts were washed with sat. aq NH4Cl and brine, and the combined organic phase was dried (Na2SO4) and concentrated. The residue was purified by flash chromatography [silica gel, PE–EtOAc (4:1)] to give a light-yellow solid; yield: 24.1 mg (95%); mp 98–99 °C. IR (KBr): 3355, 2123, 1707, 1325, 1173, 1028, 754, 602 cm–1. 1H NMR (400 MHz, DMSO): δ = 11.84 (s, 1 H), 8.31 (d, J = 16.0 Hz, 1 H), 8.20 (d, J = 7.6 Hz, 1 H), 8.14 (d, J = 7.8 Hz, 1 H), 7.85 (d, J = 7.5 Hz, 1 H), 7.59 (d, J = 8.1 Hz, 1 H), 7.51–7.40 (m, 1 H), 7.19–7.21 (m, 1 H), 6.82 (d, J = 16.0 Hz, 1 H), 3.79 (s, 3 H). 13C NMR (100 MHz, DMSO): δ = 167.5, 140.8, 140.6, 139.0, 126.6, 124.8, 124.3, 123.2, 122.6, 120.8, 119.7, 119.4, 117.7, 111.8, 51.9. HRMS (ESI): m/z [M + Na]+ calcd for C16H13NNaO2: 274.0838; found: 274.0834.