Synthesis 2021; 53(14): 2342-2366
DOI: 10.1055/a-1394-7511
short review

Recent Advances in the Synthesis of Heterocycles by the Aza-Wittig Reaction

Keyvan Pedrood
a   Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
,
Mohammad Nazari Montazer
b   Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
,
Bagher Larijani
a   Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
,
a   Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
› Author Affiliations


Abstract

The formation of the C=N bond in recent studies on heterocyclic compounds via the aza-Wittig reaction is reviewed. Furthermore, two different strategies for the formation of heterocyclic compounds, including intermolecular and intramolecular aza-Wittig reactions are described. The primary aim of this review is to provide up-to-date information on the application of the aza-Wittig reaction in the synthesis of a wide range of N-containing heterocyclic compounds in the chemical literature since 2010.

1 Introduction

2 Mechanism of the Staudinger and Aza-Wittig Reactions

3 Intramolecular Aza-Wittig Reaction

4 Intermolecular Aza-Wittig Reaction

5 Conclusion



Publication History

Received: 13 December 2020

Accepted after revision: 18 February 2021

Accepted Manuscript online:
18 February 2021

Article published online:
29 April 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Palacios F, Aparicio D, Rubiales G, Alonso C, de los Santos J. Curr. Org. Chem. 2009; 13: 810
  • 2 Guo H, Fan YC, Sun Z, Wu Y, Kwon O. Chem. Rev. 2018; 118: 10049
  • 3 Staudinger H, Meyer J. Helv. Chim. Acta 1919; 2: 635
  • 4 Staudinger H, Hauser E. Helv. Chim. Acta 1921; 4: 861
  • 5 Gololobov YG, Kasukhin LF. Tetrahedron 1992; 48: 1353
  • 6 Fresneda PM, Molina P. Synlett 2004; 1
  • 7 Okamoto K, Shimbayashi T, Tamura E, Ohe K. Chem. Eur. J. 2014; 20: 1490
  • 8 Palacios F, Alonso C, Aparicio D, Rubiales G, de los Santos JM. Tetrahedron 2007; 63: 523
  • 9 Tian WQ, Wang YA. J. Org. Chem. 2004; 69: 4299
  • 10 Pedley JB, Marshall EM. J. Phys. Chem. Ref. Data 1983; 12: 967
  • 11 Fianchini M, Maseras F. Tetrahedron 2019; 75: 1852
  • 12 Cossío FP, Alonso C, Lecea B, Ayerbe M, Rubiales G, Palacios F. J. Org. Chem. 2006; 71: 2839
  • 13 Xue Y, Kim CK. J. Phys. Chem. A 2003; 107: 7945
  • 14 Heo JH, Seo HN, Choe YJ, Kim S, Oh CR, Kim YD, Rhim H, Choo DJ, Kim J, Lee JY. Bioorg. Med. Chem. Lett. 2008; 18: 3899
  • 15 Xiong J, Wei X, Wan Y.-C, Ding M.-W. Tetrahedron 2019; 75: 1072
  • 16 Kazemi SS, Keivanloo A, Nasr-Isfahani H, Bamoniri A. RSC Adv. 2016; 6: 92663
  • 17 Ma X, Zhang X, Awad JM, Xie G, Qiu W, Muriph RE, Zhang W. Tetrahedron Lett. 2020; 61: 151392
  • 18 Kraus GA, Guo H. Tetrahedron Lett. 2010; 51: 4137
  • 19 Fresneda PM, Molina P, Delgado S. Tetrahedron 2001; 57: 6197
  • 20 He P, Nie Y.-B, Wu J, Ding M.-W. Org. Biomol. Chem. 2011; 9: 1429
  • 21 Zhong Y, Wang L, Ding M.-W. Tetrahedron 2011; 67: 3714
  • 22 Akbarzadeh R, Amanpour T, Bazgir A. Tetrahedron 2014; 70: 8142
  • 23 Wang Y, Xie H, Pan Y.-R, Ding M.-W. Synthesis 2014; 46: 336
  • 24 Tryniszewski M, Bujok R, Cmoch P, Gańczarczyk R, Kulszewicz-Bajer I, Wróbel Z. J. Org. Chem. 2019; 84: 2277
  • 25 Wang L, Wang Y, Chen M, Ding M.-W. Adv. Synth. Catal. 2014; 356: 1098
  • 26 Eguchi S, Suzuki T, Okawa T, Matsushita Y, Yashima E, Okamoto Y. J. Org. Chem. 1996; 61: 7316
  • 27 Xiong J, Wei X, Yan Y.-M, Ding M.-W. Tetrahedron 2017; 73: 5720
  • 28 Yan Y.-M, Rao Y, Ding M.-W. J. Org. Chem. 2016; 81: 1263
  • 29 Yan Y.-M, Gao Y, Ding M.-W. Tetrahedron 2016; 72: 5548
  • 30 Rosenström U, Sköld C, Lindeberg G, Botros M, Nyberg F, Karlén A, Hallberg A. J. Med. Chem. 2004; 47: 859
  • 31 Xie H, Yu J.-B, Ding M.-W. Eur. J. Org. Chem. 2011; 2011: 6933
  • 32 Abraham WT, Aranda JM, Boehmer JP, Elkayam U, Gilbert EM, Gottlieb SS, Hasenfuß G, Kukin M, Lowes BD, O’Connell JB, Tavazzi L, Feldman AM, Ticho B, Orlandi C. Clin. Transl. Sci. 2010; 3: 249
  • 33 Zhao F.-F, Zhang H, Ding M.-W. Synthesis 2013; 45: 365
  • 34 Zhao F.-F, Yan Y.-M, Zhang R, Ding M.-W. Synlett 2012; 23: 2850
  • 35 Wang L, Qin R.-Q, Yan H.-Y, Ding M.-W. Synthesis 2015; 47: 3522
  • 36 Xie H, Liu J.-C, Ding M.-W. Synthesis 2016; 48: 4541
  • 37 Wei J, Nie B.-J, Peng R, Cheng X.-H, Wang S, He P. Synlett 2016; 27: 626
  • 38 Qu F, Hu R.-F, Gao L, Wu J, Cheng X.-H, Wang S, He P. Synthesis 2015; 47: 3701
  • 39 Ren Z.-L, Lu W.-T, Cai S, Xiao M.-M, Yuan Y.-F, Ping H, Ding M.-W. J. Org. Chem. 2019; 84: 14911
  • 40 Wang Y, Chen M, Ding M.-W. Tetrahedron 2013; 69: 9056
  • 41 De Moliner F, Crosignani S, Banfi L, Riva R, Basso A. J. Comb. Chem. 2010; 12: 613
  • 42 Wang L, Ren Z.-L, Chen M, Ding M.-W. Synlett 2014; 25: 721
  • 43 Liu Y, Liu J, Qi X, Du Y. J. Org. Chem. 2012; 77: 7108
  • 44 Amos RA, Fawcett SM. J. Org. Chem. 1984; 49: 2637
  • 45 Pattarawarapan M, Yamano D, Wiriya N, Yimklan S, Phakhodee W. J. Org. Chem. 2020; 85: 13330
  • 46 Garofalo AW, Bright J, De Lombaert S, Toda AM. A, Zobel K, Andreotti D, Beato C, Bernardi S, Budassi F, Caberlotto L, Gao P, Griffante C, Liu X, Mengatto L, Migliore M, Sabbatini FM, Sava A, Serra E, Vincetti P, Zhang M, Carlisle HJ. J. Med. Chem. 2020; 63: 14821
  • 47 Li W.-J, Liu S, He P, Ding M.-W. Tetrahedron 2010; 66: 8151
  • 48 Nie Y.-B, Wang L, Ding M.-W. J. Org. Chem. 2012; 77: 696
  • 49 Nishimura Y, Cho H. Synlett 2015; 26: 233
  • 50 Yuan D, Kong H.-H, Ding M.-W. Tetrahedron 2015; 71: 419
  • 51 He P, Wu J, Nie Y.-B, Ding M.-W. Eur. J. Org. Chem. 2010; 2010: 1088
  • 52 Berlinck RG. S, Trindade-Silva AE, Santos MF. C. Nat. Prod. Rep. 2012; 29: 1382
  • 53 Hirota S, Sakai T, Kitamura N, Kubokawa K, Kutsumura N, Otani T, Saito T. Tetrahedron 2010; 66: 653
  • 54 Zhong Y, Wu L, Ding M.-W. Synthesis 2012; 44: 3085
  • 55 Nakano H, Kutsumura N, Saito T. Synthesis 2012; 44: 3179
  • 56 Nie Y.-B, Duan Z, Ding M.-W. Tetrahedron 2012; 68: 965
  • 57 Akaev AA, Villemson EV, Vorobyeva NS, Majouga AG, Budynina EM, Melnikov MY. J. Org. Chem. 2017; 82: 5689
  • 58 Savva AC, Mirallai SI, Zissimou GA, Berezin AA, Demetriades M, Kourtellaris A, Constantinides CP, Nicolaides C, Trypiniotis T, Koutentis PA. J. Org. Chem. 2017; 82: 7564
  • 59 Koutentis PA, Krassos H, Lo Re D. Org. Biomol. Chem. 2011; 9: 5228
  • 60 Berezin AA, Koutentis PA. Org. Biomol. Chem. 2014; 12: 1641
  • 61 Xie H, Yuan D, Ding M.-W. J. Org. Chem. 2012; 77: 2954
  • 62 Zhang K, Lai F, Lin S, Ji M, Zhang J, Zhang Y, Jin J, Fu R, Wu D, Tian H, Xue N, Sheng L, Zou X, Li Y, Chen X, Xu H. J. Med. Chem. 2019; 62: 6992
  • 63 Yu H, Zhang M, Li Y. J. Org. Chem. 2013; 78: 8898
  • 64 Chen X, Zhong Y, Zhao Z, Huang G. Synthesis 2017; 49: 5371
  • 65 Łukasik E, Wróbel Z. Synthesis 2016; 48: 263
  • 66 Łukasik E, Wróbel Z. Synthesis 2016; 48: 1159