Hands on - Manuelle und Physikalische Therapien in der Tiermedizin 2021; 3(04): 203-209
DOI: 10.1055/a-1395-0747
Einblicke | Regenerative Medizin

Regenerative Methoden in der Tiermedizin

Markus Wilke

Diese vergleichsweise junge Disziplin beschäftigt sich mit der Heilung von Krankheiten durch die Verstärkung körpereigener Regenerationskräfte. Im Falle von Schäden, die der Körper aus eigener Kraft nicht mehr heilen kann, geht es um den gezielten Ersatz von körpereigenen (Boten-)stoffen und Zellen. Die zentralen Fragen sind: Wie unterstützen Biomaterialien, biologisch aktive Faktoren oder Zellen die individuelle Regenerationsfähigkeit? Wo lassen sich diese Effekte therapeutisch nutzbar machen? Welche praktischen und rechtlichen Gesichtspunkte gibt es dabei zu beachten?



Publication History

Article published online:
22 December 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Thomas ED. et al. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med 1957; 257 491–6. Frantz C et al. The extracellular matrix at a glance. J Cell Sci 2010 Dec 15; 123(24): 4195-4200
  • 2 Brown BN. et al. Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater 2012; 8: 978-987
  • 3 Mitchell KB, Gallagher JJ. Porcine bladder extracellular matrix for closure of a large defect in a burn contracture release. Journal of Wound Care 2012; 21: 454-456
  • 4 Zhang Hao. et al. Demineralized Bone Matrix Carriers and their Clinical Applications : An Overview. Orthop Surg 2019; 11: 725-737
  • 5 Karthika S. et al. A porcine-cholecyst-derived scaffold for treating full thickness lacerated skin wounds in dogs. Vet Res Commun 2018; 42: 233–242
  • 6 Balland O. et al. Use of a porcine urinary bladder acellular matrix for corneal reconstruction in dogs and cats. Vet Ophthalmol 2016; 19: 454–463
  • 7 Hoffer MJ. et al. Clinical applications of demineralized bone matrix: a retrospective and case-matched study of seventy-five dogs. Vet Surg 2008; 37: 639–47
  • 8 Dzobo K. et al. Recent Trends in Decellularized Extracellular Matrix Bioinks for 3D Printing: An Updated Review. Int J Mol Sci. 2019; 20: 4628
  • 9 Kaplan DR. et al. Platelet alpha granules contain a growth factor for fibroblasts. Blood (1979) 53: 1043–52
  • 10 Sampson S. et al. Platelet rich plasma injection grafts for musculoskeletal injuries: a review. Curr Rev Musculoskelet Med 2008; 1: 165–74
  • 11 Waselau M. et al. Intralesional injection of platelet-rich plasma followed by controlled exercise for treatment of midbody suspensory ligament desmitis in Standardbred racehorses. J Am Vet Med Assoc (2008) 232: 1515–20
  • 12 Tyrnenopoulou P. et al. Evaluation of intra-articular injection of autologous platelet lysate (PL) in horses with osteoarthritis of the distal interphalangeal joint. Vet Q (2016) 36: 56–62
  • 13 Garbin LC, Olver CS. Platelet-rich products and their application to osteoarthritis. J Equine Vet Sci 2020; 86: 102820
  • 14 Monteiro SO. et al. Effects of platelet-rich plasma on the repair of wounds on the distal aspect of the forelimb in horses. Am J Vet Res 2009; 70: 277–82
  • 15 Arend WP, Malyak M, Guthridge CJ, Gabay C. Interleukin-1 Receptor Antagonist: Role in Biology. Annu. Rev. Immunol. 1998; 16: 27–55
  • 16 Frisbie DD, Kawcak CE, Werpy NM, Park RD, McIlwraith CW. Clinical, biochemical, and histologic effects of intraarticular administration of autologous conditioned serum in horses with experimentally induced osteoarthritis. Am J Vet Res 2007; 68: 290–296
  • 17 Warner K, Lischer CJ. Komplikationen nach intraartikulärer Anwendung von ACS (IRAP®) beim Pferd – Retrospektive Studie. Equine Medicine 33 (2017) 4 (356–362)
  • 18 Broeckx SY. et al Equine Allogeneic Chondrogenic Induced Mesenchymal Stem Cells Are an Effective Treatment for Degenerative Joint Disease in Horses. Stem Cells Dev 2019; 28: 410–422
  • 19 Lélia Bertoni L. et al. Evaluation of Allogeneic Bone-Marrow-Derived and Umbilical Cord Blood-Derived Mesenchymal Stem Cells to Prevent the Development of Osteoarthritis in An Equine Model. 2021; 22: 2499