Synlett 2021; 32(18): 1796-1815
DOI: 10.1055/a-1472-4594
account

Pivotal Reactions in the Creation of the Polycyclic Skeleton of Cryptotrione

Zhuliang Zhong
b   Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P. R. of China
,
Mao-Yun Lyu
b   Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P. R. of China
,
Hao-Ran Ma
a   School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Longgang District, Shenzhen, P. R. of China
,
Henry N. C. Wong
a   School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Longgang District, Shenzhen, P. R. of China
b   Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P. R. of China
,
a   School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Longgang District, Shenzhen, P. R. of China
b   Department of Chemistry, and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P. R. of China
› Author Affiliations
This work was supported by grants from the National Natural Science Foundation of China (NSFC) (21971219, 21672181), the Research Grants Council (RGC), University Grants Committee (Hong Kong) in the form of the General Research Fund (GRF) (CUHK14304819, CUHK14309216, CUHK14303815 and 403012), the Innovation and Technology Commission - Hong Kong in the form of a subsidy to the State Key Laboratory of Synthetic Chemistry, the Impact Postdoctoral Fellow Scheme, direct grants from the Chinese University of Hong Kong (CUHK), an open grant to CUHK-Shenzhen from the State Key Laboratory of Synthetic Chemistry, and the University Development Fund Grants from The Chinese University of Hong Kong, Shenzhen.


Dedicated to the memory of Professor Shang-Wai Tam, who passed away January 1, 2021

Abstract

Three pivotal reactions, namely, enyne cycloisomerization, polyene cyclization, and quinone methide formation, are applied to synthesize the complex polycyclic skeleton of cryptotrione. This review summarizes the most prominent applications of these three reactions to the total syntheses of natural products, covering results published in the literature between 2011 and 2020.

1 Introduction

2 Three Pivotal Reactions Applied to Create the Polycyclic Framework of Cryptotrione

2.1 Enyne Cycloisomerization

2.2 Polyene Cyclization

2.3 Quinone Methide Formation

3 Conclusion



Publication History

Received: 07 March 2021

Accepted after revision: 31 March 2021

Accepted Manuscript online:
31 March 2021

Article published online:
28 April 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Lyu M.-Y, Zhong Z, Lo VK.-Y, Wong HN. C, Peng X.-S. Angew. Chem. Int. Ed. 2020; 59: 19929
  • 2 Chen C.-C, Wu J.-H, Yang N.-S, Chang J.-Y, Kuo C.-C, Wang S.-Y, Kuo Y.-H. Org. Lett. 2010; 12: 2786
  • 3 Trost BM, Lautens M. J. Am. Chem. Soc. 1985; 107: 1781
    • 4a Stathakis CI, Gkizis PL, Zografos AL. Nat. Prod. Rep. 2016; 33: 1093
    • 4b Hu Y, Bai M, Yang Y, Zhou Q. Org. Chem. Front. 2017; 4: 2256
    • 4c Lee Y.-C, Kumar K. Isr. J. Chem. 2018; 58: 531
  • 5 Trost BM, Toste FD. J. Am. Chem. Soc. 2000; 122: 714
  • 6 Cao P, Wang B, Zhang X. J. Am. Chem. Soc. 2000; 122: 6490
  • 7 Chatani N, Inoue H, Morimoto T, Muto T, Murai S. J. Org. Chem. 2001; 66: 4433
  • 8 Llerena D, Aubert C, Malacria M. Tetrahedron Lett. 1996; 37: 7353
  • 9 Sturla SJ, Kablaoui NM, Buchwald SL. J. Am. Chem. Soc. 1999; 121: 1976
    • 10a Trost BM, Tanoury GJ, Lautens M, Chan C, MacPherson DT. J. Am. Chem. Soc. 1994; 116: 4255
    • 10b Trost BM, Romero DL, Rise F. J. Am. Chem. Soc. 1994; 116: 4268
  • 11 Holzapfel CW, Marais L. Tetrahedron Lett. 1998; 39: 2179
  • 12 Trost BM, Toste FD. J. Am. Chem. Soc. 1999; 121: 9728
  • 13 Cheng B, Wu F, Yang X, Zhou Y, Wan X, Zhai H. Chem. Eur. J. 2011; 17: 12569
  • 14 Deng H, Yang X, Tong Z, Li Z, Zhai H. Org. Lett. 2008; 10: 1791
  • 15 Newcomb ET, Knutson PC, Pedersen BA, Ferreira EM. J. Am. Chem. Soc. 2016; 138: 108
  • 16 Cheng H, Zeng F.-H, Yang X, Meng Y.-J, Xu L, Wang F.-P. Angew. Chem. Int. Ed. 2016; 55: 392
  • 17 Hoang TT, Birepinte M, Kramer NJ, Dudley GB. Org. Lett. 2016; 18: 3470
  • 18 Carreras J, Kirillova MS, Echavarren AM. Angew. Chem. Int. Ed. 2016; 55: 7121
  • 19 Raghavan S, Yelleni MK. R. J. Org. Chem. 2016; 81: 10912
  • 20 Lei H, Xin S, Qiu Y, Zhang X. Chem. Commun. 2018; 54: 727
  • 21 Hönig M, Carreira EM. Angew. Chem. Int. Ed. 2020; 59: 1192
  • 22 Lu X.-L, Lyu M.-Y, Peng X.-S, Wong HN. C. Angew. Chem. Int. Ed. 2018; 57: 11365
  • 23 Barrett AG. M, Ma T.-K, Mies T. Synthesis 2019; 51: 67
    • 24a Stork G, Burgstahler AW. J. Am. Chem. Soc. 1955; 77: 5068
    • 24b Eschenmoser A, Ruzicka L, Jeger O, Arigoni D. Helv. Chim. Acta 1955; 38: 1890
  • 26 Topczewski JJ, Kodet JG, Wiemer DF. J. Org. Chem. 2011; 76: 909
  • 27 Domingo V, Arteaga JF, López Pérez JL, Peláez R, Quílez del Moral JF, Barrero AF. J. Org. Chem. 2012; 77: 341
  • 28 Li B, Lai Y.-C, Zhao Y, Wong Y.-H, Shen Z.-L, Loh T.-P. Angew. Chem. Int. Ed. 2012; 51: 10619
  • 29 Schafroth MA, Sarlah D, Krautwald S, Carreira EM. J. Am. Chem. Soc. 2012; 134: 20276
  • 30 Jeker OF, Kravina AG, Carreira EM. Angew. Chem. Int. Ed. 2013; 52: 12166
  • 31 Deng J, Zhou S, Zhang W, Li J, Li R, Li A. J. Am. Chem. Soc. 2014; 136: 8185
  • 32 Zhou S, Chen H, Luo Y, Zhang W, Li A. Angew. Chem. Int. Ed. 2015; 54: 6878
  • 33 Zhou S, Guo R, Yang P, Li A. J. Am. Chem. Soc. 2018; 140: 9025
  • 34 Lai Y, Zhang N, Zhang Y, Chen J.-H, Yang Z. Org. Lett. 2018; 20: 4298
  • 35 Barrett TN, Barrett AG. M. J. Am. Chem. Soc. 2014; 136: 17013
  • 36 Ma T.-K, Elliott DC, Reid S, White AJ. P, Parsons PJ, Barrett AG. M. J. Org. Chem. 2018; 83: 13276
  • 37 Rosen BR, Werner EW, O’Brien AG, Baran PS. J. Am. Chem. Soc. 2014; 136: 5571
  • 38 Xu H, Tang H, Feng H, Li Y. J. Org. Chem. 2014; 79: 10110
  • 39 Xu H, Tang H, Feng H, Li Y. Tetrahedron Lett. 2014; 55: 7118
  • 40 Zhu L, Luo J, Hong R. Org. Lett. 2014; 16: 2162
  • 41 Camelio AM, Johnson TC, Siegel D. J. Am. Chem. Soc. 2015; 137: 11864
  • 42 Fuse S, Ikebe A, Oosumi K, Karasawa T, Matsumura K, Izumikawa M, Johmoto K, Uekusa H, Shin-ya K, Doi T, Takahashi T. Chem. Eur. J. 2015; 21: 9454
  • 43 Göhl M, Seifert K. Eur. J. Org. Chem. 2015; 6249
  • 44 Rosales A, Muñoz-Bascón J, Roldan-Molina E, Rivas-Bascón N, Padial NM, Rodríguez-Maecker R, Rodríguez-García I, Oltra JE. J. Org. Chem. 2015; 80: 1866
  • 45 Trotta AH. Org. Lett. 2015; 17: 3358
    • 46a Speck K, Wildermuth R, Magauer T. Angew. Chem. Int. Ed. 2016; 55: 14131
    • 46b Speck K, Magauer T. Chem. Eur. J. 2017; 23: 1157
  • 47 Lin S.-C, Chein R.-J. J. Org. Chem. 2017; 82: 1575
  • 48 Elkin M, Szewczyk SM, Scruse AC, Newhouse TR. J. Am. Chem. Soc. 2017; 139: 1790
  • 49 Alonso P, Pardo P, Fontaneda R, Fañanás FJ, Rodríguez F. Chem. Eur. J. 2017; 23: 13158
  • 50 Yang Z, Li S, Luo S. Acta Chim. Sin. 2017; 75: 351
    • 51a Deng H, Cao W, Liu R, Zhang Y, Liu B. Angew. Chem. Int. Ed. 2017; 56: 5849
    • 51b Cao W, Deng H, Sun Y, Liu B, Qin S. Chem. Eur. J. 2018; 24: 9120
  • 52 Saito Y, Goto M, Nakagawa-Goto K. Org. Lett. 2018; 20: 628
  • 53 Rajendar G, Corey EJ. J. Am. Chem. Soc. 2015; 137: 5837
  • 54 Fan L, Han C, Li X, Yao J, Wang Z, Yao C, Chen W, Wang T, Zhao J. Angew. Chem. Int. Ed. 2018; 57: 2115
  • 55 Peng X.-R, Lu S.-Y, Shao L.-D, Zhou L, Qiu M.-H. J. Org. Chem. 2018; 83: 5516
    • 56a Sawamura Y, Nakatsuji H, Sakakura A, Ishihara K. Chem. Sci. 2013; 4: 4181
    • 56b Sawamura Y, Ogura Y, Nakatsuji H, Sakakura A, Ishihara K. Chem. Commun. 2016; 52: 6068
    • 56c Tao Z, Robb KA, Zhao K, Denmark SE. J. Am. Chem. Soc. 2018; 140: 3569
  • 57 Merchant RR, Oberg KM, Lin Y, Novak AJ. E, Felding J, Baran PS. J. Am. Chem. Soc. 2018; 140: 7462
  • 58 Rovira AR, Müller N, Deng W, Ndubaku C, Sarpong R. Chem. Sci. 2019; 10: 7788
  • 59 Boyko YD, Huck CJ, Sarlah D. J. Am. Chem. Soc. 2019; 141: 14131
  • 60 Hu J, Jia Z, Xu K, Ding H. Org. Lett. 2020; 22: 1426
  • 61 Feilner JM, Wurst K, Magauer T. Angew. Chem. Int. Ed. 2020; 59: 12436
  • 62 Nielsen CD. T, Abas H, Spivey AC. Synthesis 2018; 50: 4008
  • 63 Turner AB. Q. Rev. Chem. Soc. 1964; 18: 347
  • 64 Desimoni G, Tacconi G. Chem. Rev. 1975; 75: 651
  • 65 Cavitt SB, R. Sarrafizadeh H, Gardner PD. J. Org. Chem. 1962; 27: 1211
  • 66 Merijan A, Shoulders BA, Gardner PD. J. Org. Chem. 1963; 28: 2148
  • 67 Filar LJ, Winstein S. Tetrahedron Lett. 1960; 1: 9
  • 68 Green JC, Jiménez-Alonso S, Brown ER, Pettus TR. R. Org. Lett. 2011; 13: 5500
  • 69 Bai W.-J, Green JC, Pettus TR. R. J. Org. Chem. 2012; 77: 379
  • 70 Green JC, Brown ER, Pettus TR. R. Org. Lett. 2012; 14: 2929
  • 71 Huang J, Foyle D, Lin X, Yang J. J. Org. Chem. 2013; 78: 9166
  • 72 Jepsen TH, Thomas SB, Lin Y, Stathakis CI, de Miguel I, Snyder SA. Angew. Chem. Int. Ed. 2014; 53: 6747
  • 73 Song L, Yao H, Tong R. Org. Lett. 2014; 16: 3740
  • 74 Feng Z.-G, Bai W.-J, Pettus TR. R. Angew. Chem. Int. Ed. 2015; 54: 1864
  • 75 Markwell-Heys AW, Kuan KK. W, George JH. Org. Lett. 2015; 17: 4228
  • 76 Spence JT. J, George JH. Org. Lett. 2015; 17: 5970
  • 77 Takao K.-i, Noguchi S, Sakamoto S, Kimura M, Yoshida K, Tadano K.-i. J. Am. Chem. Soc. 2015; 137: 15971
  • 78 Zhao N, Ren X, Ren J, Lü H, Ma S, Gao R, Li Y, Xu S, Li L, Yu S. Org. Lett. 2015; 17: 3118
  • 79 Xu L, Liu F, Xu L.-W, Gao Z, Zhao Y.-M. Org. Lett. 2016; 18: 3698
  • 80 Mori-Quiroz LM, Dekarske MM, Prinkki AB, Clift MD. J. Org. Chem. 2017; 82: 12257
  • 81 Reichl KD, Smith MJ, Song MK, Johnson RP, Porco JA. J. Am. Chem. Soc. 2017; 139: 14053
  • 82 Dethe DH, Kumar B V, Maiti R. Org. Biomol. Chem. 2018; 16: 4793
  • 84 Ahmad A, Burtoloso AC. B. Org. Lett. 2019; 21: 6079