Synthesis 2021; 53(15): 2651-2655
DOI: 10.1055/a-1477-4371
paper

Synthesis of Diporphyrins by Oxidative Coupling with Pd(TFA)2-Cu(OTf)2 under Ball-Milling Conditions

Xiuqiang Lu
a   School of Materials and Environmental Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, P. R. of China
b   Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. of China
,
Guofen Chen
a   School of Materials and Environmental Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, P. R. of China
,
Fei Li
c   School of Environment and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. of China
› Author Affiliations
We are grateful to the National Natural Science Foundation of China (No. 51503037, 12075147), the Natural Science Foundation of Fujian Province (No. 2020J01304), the Program for New Century Excellent Talents in Fujian Province Universities, and the Scientific Research Project for Young and Middle-aged Teachers in Fujian Province (No. JT180633).


Abstract

A sustainable synthetic method for the synthesis of diporphyrins under ball-milling conditions is reported. The meso-meso linked diporphyrins are efficiently accessed by direct oxidative homo-coupling of porphyrins with Pd(TFA)2 as the catalyst and Cu(OTf)2 as the oxidant.

Supporting Information



Publication History

Received: 19 February 2021

Accepted after revision: 08 April 2021

Accepted Manuscript online:
08 April 2021

Article published online:
27 April 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Wasielewski MR. Chem. Rev. 1992; 92: 435
    • 2a Kim KS, Lim JM, Osuka A, Kim D. J. Photochem. Photobiol., C 2008; 9: 13
    • 2b Senge MO, Fazekas M, Notaras EG. A, Blau WJ, Zawadzka M, Locos OB, Mhuircheartaigh EM. N. Adv. Mater. 2007; 19: 2737
    • 2c Sitte E, Senge MO. Eur. J. Org. Chem. 2020; 3171
    • 2d Chen Y, Zeng K, Li C, Liu X, Xie Y. J. Porphyrins Phthalocyanines 2019; 24: 401
    • 2e Li Q, Li C, Baryshnikov G, Ding Y, Zhao C, Gu T, Sha F, Liang X, Zhu W, Wu X, Ågren H, Sessler JL, Xie Y. Nat. Commun. 2020; 11: 5289
    • 2f Zeng K, Chen Y, Zhu W.-H, Tian H, Xie Y. J. Am. Chem. Soc. 2020; 142: 5154
    • 2g Zeng K, Tong Z, Ma L, Zhu W.-H, Wu W, Xie Y. Energy Environ. Sci. 2020; 1617
    • 2h Zou J, Yan Q, Li C, Lu Y, Tong Z, Xie Y. ACS Appl. Mater. Interfaces 2020; 12: 57017
    • 2i Tang Y, Wang Y, Yan Q, Zeng K, Tang W, Zhao S, Kong C, Xie Y. Dyes Pigm. 2021; 187: 109075
  • 3 Ouyang Q, Zhu Y.-Z, Zhang C.-H, Yan K.-Q, Li Y.-C, Zheng J.-Y. Org. Lett. 2009; 11: 5266
    • 4a Aratani N, Ouska A. Chem. Commun. 2008; 4067
    • 4b Yoshida N, Osuka A. Tetrahedron Lett. 2000; 41: 9287
    • 4c Kamo M, Tsuda A, Nakamura Y, Aratani N, Furukawa K, Kato T, Osuka A. Org. Lett. 2003; 5: 2079
    • 4d Sahoo AK, Nakamura Y, Aratani N, Kim KS, Noh SB, Shinokubo H, Kim D, Osuka A. Org. Lett. 2006; 8: 4141
  • 5 Osuka A, Shimidzu H. Angew. Chem., Int. Ed. Engl. 1997; 36: 135
  • 6 Ogawa T, Nishimoto Y, Yoshida N, Ono N, Osuka A. Chem. Commun. 1998; 337
    • 7a Shi X, Liebeskind LS. J. Org. Chem. 2000; 65: 1655
    • 7b Senge MO, Feng X. Tetrahedron Lett. 1999; 40: 4165
  • 8 Wojaczyński J, Latos-Grażyński L, Chmielewski PJ, Calcar PV, Balch AL. Inorg. Chem. 1999; 38: 3040
  • 9 Jin L.-M, Yin J.-J, Chen L, Guo C.-C, Chen Q.-Y. Synlett 2005; 2893
  • 10 Ogawa T, Nishimoto Y, Yoshida N, Ono N, Osuka A. Angew. Chem. Int. Ed. 1999; 38: 176
  • 11 Jin L.-M, Chen L, Yin J.-J, Guo C.-C, Chen Q.-Y. Eur. J. Org. Chem. 2005; 3994
  • 12 Lu X.-Q, Guo Y, Chen Q.-Y. Synlett 2011; 77
  • 13 Anastas P, Eghbali N. Chem. Soc. Rev. 2010; 39: 301
    • 14a Takacs L. Chem. Soc. Rev. 2013; 42: 7649
    • 14b James SL, Adams CJ, Bolm C, Braga D, Collier P, Friščić T, Grepioni F, Harris KD. M, Hyett G, Jones V, Krebs A, Mack J, Maini L, Orpen AG, Parkin IP, Shearouse WC, Steed JW, Waddell DC. Chem. Soc. Rev. 2012; 41: 413
    • 14c Hernández JG, Bolm C. J. Org. Chem. 2017; 82: 4007
    • 14d Do J.-L, Friščić T. ACS Cent. Sci. 2017; 3: 13
    • 14e Achar TK, Bose A, Mal P. Beilstein J. Org. Chem. 2017; 13: 1907
    • 14f Howard JL, Cao Q, Browne DL. Chem. Sci. 2018; 9: 3080
    • 14g Bolm C, Hernández JG. Angew. Chem. Int. Ed. 2019; 58: 3285
    • 14h Friščić T, Mottillo C, Titi HM. Angew. Chem. Int. Ed. 2020; 59: 1018
    • 14i Porcheddu A, Colacino E, Luca LD, Delogu F. ACS Catal. 2020; 10: 8344
    • 14j Egorov IN, Santra S, Kopchuk DS, Kovalev IS, Zyryanov GV, Majee A, Ranu BC, Rusinov VL, Chupakhin ON. Green Chem. 2020; 22: 302
    • 14k Stolar T, Uzarević K. CrystEngComm 2020; 22: 4511
    • 15a Rightmire NR, Hanusa TP. Dalton Trans. 2016; 2352
    • 15b Hernández JG. Chem. Eur. J. 2017; 23: 17157
  • 17 Stuart DR, Fagnou K. Science 2007; 316: 1172
    • 18a Grätz S, Beyer D, Tkachova V, Hellmann S, Berger R, Feng X, Borchardt L. Chem. Commun. 2018; 54: 5307
    • 18b Krusenbaum A, Grätz S, Bimmermann S, Hutsch S, Borchardt L. RSC Adv. 2020; 10: 25509
    • 18c Grätz S, Oltermann M, Troschke E, Paasch S, Krause S, Brunner E, Borchardt L. J. Mater. Chem. A 2018; 6: 21901