Synthesis 2021; 53(19): 3522-3534
DOI: 10.1055/a-1486-2158
short review

Recent Advances in the Tandem Difunctionalization of Alkynes: Mechanism-Based Classification

Biwen Gao
a   Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. of China
,
Danfeng Deng
a   Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. of China
,
Dayun Huang
a   Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. of China
,
Xiangyu Sun
b   Torch High Technology Industry Development Center, Ministry of Science & Technology, NO.18,Sanlihe District,Beijing,100045, P. R. of China
› Author Affiliations
We thank the Natural Science Foundation of Zhejiang Province (LQ18B020001) and the Foundation of University Student Innovation Program for financial support.


Abstract

Recent advances on the tandem difunctionalization of alkynes in the last decade (2010–2020) are summarized into five categories based on the type of mechanism: (1) radical addition and coupling for the synthesis of polysubstituted ketones and alkenes, (2) electrophilic addition of alkynes, (3) reactions mediated by haloalkynes or copper acetylides, (4) the preparation of cyclic compounds via radical processes, palladium-catalyzed reactions or conjugate additions, and (5) cyclic compounds as intermediates in ring openings. Herein, radical, electrophilic and nucleophilic reactions are discussed in detail. We hope this review will help to promote future research in this area.

1 Introduction

2 Radical Addition and Coupling

3 Electrophilic Addition

4 Reactions Mediated by Haloalkynes or Copper Acetylides

5 Cyclization

6 Cyclization and Ring Opening

7 Conclusions



Publication History

Received: 23 March 2021

Accepted after revision: 19 April 2021

Accepted Manuscript online:
19 April 2021

Article published online:
19 May 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Mei H, Yin Z, Liu J, Sun H, Han J. Chin. J. Chem. 2019; 37: 292
    • 1b Ren X, Lu Z. Chin. J. Catal. 2019; 40: 1003
    • 1c Koike T, Akita M. Acc. Chem. Res. 2016; 49: 1937
    • 1d Besset T, Poisson T, Pannecoucke X. Eur. J. Org. Chem. 2015; 2765
    • 1e Li G, Huo X, Jiang X, Zhang W. Chem. Soc. Rev. 2020; 49: 2060
    • 1f Huple DB, Ghorpade S, Liu R.-S. Adv. Synth. Catal. 2016; 358: 1348
    • 1g Shimizu Y, Kanai M. Tetrahedron Lett. 2014; 55: 3727
    • 1h Qian H, Huang D, Bi Y, Yan G. Adv. Synth. Catal. 2019; 361: 3240
    • 1i Sheng X, Chen K, Shi C, Huang D. Synthesis 2020; 52: 1
    • 1j Li L, Huang D, Shi C, Yan G. Adv. Synth. Catal. 2019; 361: 1958
    • 1k Li Y, Yu J, Bi Y, Yan G, Huang D. Adv. Synth. Catal. 2019; 361: 4839
    • 1l Chen C, Wu J, Yan G, Huang D. Tetrahedron Lett. 2020; 61: 151415
    • 1m Huang M.-H, Hao W.-J, Li G, Tu S.-J, Jiang B. Chem. Commun. 2018; 54: 10791
    • 2a Huang L, Rudolph M, Rominger F, Hashmi AS. K. Angew. Chem. Int. Ed. 2016; 55: 4808
    • 2b Tlahuext-Aca A, Hopkinson MN, Garza-Sanchez RA, Glorius F. Chem. Eur. J. 2016; 22: 5909
    • 2c Lai J, Tian L, Huo X, Zhang Y, Xie X, Tang S. J. Org. Chem. 2015; 80: 5894
    • 2d Zhang X, Mei Y, Li Y, Hu J, Huang D, Bi Y. Asian J. Org. Chem. 2021; 10: 453
  • 3 Zhou M, Chen M, Zhou Y, Yang K, Su J, Du J, Song Q. Org. Lett. 2015; 17: 1786
    • 4a Lv Y, Liu Q, Liu F, Yue H, Li J.-S, Wei W. Tetrahedron Lett. 2020; 61: 151335
    • 4b Lu Q, Zhang J, Zhao G, Qi Y, Wang H, Lei A. J. Am. Chem. Soc. 2013; 135: 11481
    • 4c Cai S, Chen D, Xu Y, Weng W, Li L, Zhang R, Huang M. Org. Biomol. Chem. 2016; 14: 4205
    • 4d Handa S, Fennewald JC, Lipshutz BH. Angew. Chem. Int. Ed. 2014; 53: 3432
    • 4e Singh AK, Chawla R, Yadav LD. S. Tetrahedron Lett. 2014; 55: 2845
    • 4f Zhao S, Chen K, Zhang L, Yang W, Huang D. Adv. Synth. Catal. 2020; 362: 3516
  • 5 Shang T, Zhang J, Zhang Y, Zhang F, Li X.-S, Zhu G. Org. Lett. 2020; 22: 3667
    • 6a Xiang Y, Li Y, Kuang Y, Wu J. Adv. Synth. Catal. 2017; 359: 2605
    • 6b Li Y, Xiang Y, Li Z, Wu J. Org. Chem. Front. 2016; 3: 1493
    • 6c Wang K, Meng L.-G, Wang L. J. Org. Chem. 2016; 81: 7080
    • 7a Lu L.-H, Zhou S.-J, He W.-B, Xia W, Chen P, Yu X, Xu X, He W.-M. Org. Biomol. Chem. 2018; 16: 9064
    • 7b Wang J, Xiong H.-Y, Petit E, Bailly L, Pannecoucke X, Poisson T, Besset T. Chem. Commun. 2019; 55: 8784
    • 7c Wang D, Zhang R, Lin S, Yan Z, Guo S. Synlett 2016; 27: 2003
    • 7d Bi W, Ren C, Jia L, Xia X, Chen X, Chen X, Zhao Y. Phosphorus, Sulfur Silicon Relat. Elem. 2017; 192: 391
    • 7e Xiang Y, Kuang Y, Wu J. Chem. Eur. J. 2017; 23: 6996
    • 7f Yang L, Hu D, Wei L, Liu Y. Phosphorus, Sulfur Silicon Relat. Elem. 2017; 192: 1301
    • 8a Wei W, Wen J, Yang D, Jing H, You J, Wang H. RSC Adv. 2015; 5: 4416
    • 8b Ansari MY, Kumar N, Kumar A. Org. Lett. 2019; 21: 3931
    • 9a Yue H, Zhu C, Kancherla R, Liu F, Rueping M. Angew. Chem. Int. Ed. 2020; 59: 5738
    • 9b Guo L, Song F, Zhu S, Li H, Chu L. Nat. Commun. 2018; 9: 4543
    • 9c Zhu C, Yue H, Maity B, Atodiresei I, Cavallo L, Rueping M. Nat. Catal. 2019; 2: 678
    • 10a Domanski S, Chaładaj W. ACS Catal. 2016; 6: 3452
    • 10b He Y, Wang Q, Li L, Liu X, Xu P, Liang Y. Org. Lett. 2015; 17: 5188
    • 11a Wang Q, Zheng L, He Y.-T, Liang Y.-M. Chem. Commun. 2017; 53: 2814
    • 11b Wang Q, Yu X, Jin J, Wu Y, Liang Y. Chin. J. Chem. 2018; 36: 223
    • 11c Wang Q, Jin J.-N, Chen X, Wang X.-G, Zhang B.-S, Ma J.-W, Liang Y.-M. J. Org. Chem. 2018; 83: 14626
    • 12a Huang S, Chen Z, Mao H, Hu F, Li D, Tan Y, Yang F, Qin W. Org. Biomol. Chem. 2019; 17: 1121
    • 12b Gu Y, Duan Y, Shen Y, Martin R. Angew. Chem. Int. Ed. 2020; 59: 2061
    • 12c Zhao M, Shan C.-C, Wang Z.-L, Yang C, Fu Y, Xu Y.-H. Org Lett. 2019; 21: 6016
    • 12d Gao M, Xu B. Org. Lett. 2016; 18: 4746
    • 12e Li J, Yang Z, Guo R, Jin MY, Wang J. Asian J. Org. Chem. 2018; 7: 1784
    • 12f Zhang Z, Luo Y, Du H, Xu J, Li P. Chem. Sci. 2019; 10: 5156
    • 12g Zhang Z, Li P. Tetrahedron Lett. 2020; 61: 151707
    • 13a Ding W, Chai J, Wang C, Wu J, Yoshikai N. J. Am. Chem. Soc. 2020; 142: 8619
    • 13b Chai J, Ding W, Wu J, Yoshikai N. Chem. Asian J. 2020; 15: 2166
    • 14a Li Y, Liu X, Ma D, Liu B, Jiang H. Adv. Synth. Catal. 2012; 354: 2683
    • 14b Chen Z, Li J, Jiang H, Zhu S, Li Y, Qi C. Org. Lett. 2010; 12: 3262
    • 14c Li M, Yuan H, Zhao B, Liang F, Zhang J. Chem. Commun. 2014; 50: 2360
  • 15 Li Y, Liu X, Jiang H, Feng Z. Angew. Chem. Int. Ed. 2010; 49: 3338
    • 16a Xiao C, Wan H.-X, Zhang S. Asian J. Org. Chem. 2019; 8: 654
    • 16b Zhang S, Xiao C. J. Org. Chem. 2018; 83: 10908
    • 16c Zhang S.-L, Xiao C, Wan H.-X, Zhang X. Chem. Commun. 2019; 55: 4099
    • 17a Sun Q, Li L, Liu L, Yang Y, Zha Z, Wang Z. Sci. China Chem. 2019; 62: 904
    • 17b Sun Q, Li L, Liu L, Guan Q, Yang Y, Zha Z, Wang Z. Org. Lett. 2018; 20: 5592
    • 18a Yan K, Yang D, Wei W, Wang F, Shuai Y, Li Q, Wang H. J. Org. Chem. 2015; 80: 1550
    • 18b Liu Y, Wang Q.-L, Zhou C.-S, Xiong B.-Q, Zhang P.-L, Kang S.-J, Yang C.-A, Tang K.-W. Tetrahedron Lett. 2018; 59: 2038
    • 18c Feng S, Xie X, Zhang W, Liu L, Zhong Z, Xu D, She X. Org. Lett. 2016; 18: 3846
    • 18d Pan C, Chen R, Shao W, Yu J. Org. Biomol. Chem. 2016; 14: 9033
    • 18e Deng J.-R, Chan W.-C, Lai NC.-H, Yang B, Tsang C.-S, Ko BC.-B, Chan SL.-F, Wong M.-K. Chem. Sci. 2017; 8: 7537
    • 19a Mi X, Wang C, Huang M, Zhang J, Wu Y, Wu Y. Org. Lett. 2014; 16: 3356
    • 19b Liu D, Chen J.-Q, Wang X.-Z, Xu P.-F. Adv. Synth. Catal. 2017; 359: 2773
    • 20a Kanyiva KS, Hamada D, Makino S, Takano H, Shibata T. Eur. J. Org. Chem. 2018; 5905
    • 20b Wei W, Wen J, Yang D, Guo M, Wang Y, You J, Wang H. Chem. Commun. 2015; 51: 768
    • 21a Liu Y, Wang Q.-L, Zhou C.-S, Xiong B.-Q, Zhang P.-L, Yang C.-a, Tang K.-W. J. Org. Chem. 2018; 83: 2210
    • 21b Ouyang X.-H, Song R.-J, Li Y, Liu B, Li J.-H. J. Org. Chem. 2014; 79: 4582
    • 21c Hua H, He Y, Qiu Y, Li Y, Song B, Gao P, Song X, Guo D, Liu X, Liang Y. Chem. Eur. J. 2014; 20: 1468
    • 21d Li M, Song R.-J, Li J.-H. Chin. J. Chem. 2017; 35: 299
    • 21e Wang C.-S, Roisnel T, Dixneuf PH, Soulé J.-F. Adv. Synth. Catal. 2019; 361: 445
    • 21f Wei W.-T, Song R.-J, Ouyang X.-H, Li Y, Li H.-B, Li J.-H. Org. Chem. Front. 2014; 1: 484
  • 22 Yang XH, Ouyang X.-H, Wei W.-T, Song R.-J, Li J.-H. Adv. Synth. Catal. 2015; 357: 1161
  • 23 Gao P, Zhang W, Zhang Z. Org. Lett. 2016; 18: 5820
    • 24a Jin D.-P, Gao P, Chen D.-Q, Chen S, Wang J, Liu X.-Y, Liang Y.-M. Org. Lett. 2016; 18: 3486
    • 24b Wei W, Cui H, Yang D, Yue H, He C, Zhang Y, Wang H. Green Chem. 2017; 19: 5608
  • 25 Li C, Xue L, Zhou J, Zhao Y, Han G, Hou J, Song Y, Liu Y. Org. Lett. 2020; 22: 3291
  • 26 Hua H.-L, Zhang B.-S, He Y.-T, Qiu Y.-F, Wu X.-X, Xu P.-F, Liang Y.-M. Org. Lett. 2016; 18: 216
    • 27a Zhang T, Yang L, Cai P, Tu S, Jiang B. Chem. Asian. J. 2019; 14: 4383
    • 27b Huang X, Chen H, Huang Z, Xu Y, Li F, Ma X, Chen Y. J. Org. Chem. 2019; 84: 15283
    • 28a Ramkumar N, Van Meervelt L, Van der Eycken EV. Org. Lett. 2019; 21: 850
    • 28b He Y.-T, Wang Q, Zhao J, Liu X.-Y, Xu P.-F, Liang Y.-M. Chem. Commun. 2015; 51: 13209
    • 28c Wang F, Zhu N, Chen P, Ye J, Liu G. Angew. Chem. Int. Ed. 2015; 54: 9356
    • 29a Huang D, Yan G. Adv. Synth. Catal. 2017; 359: 1600
    • 29b Reddy CR, Ranjan R, Prajapti SK. Org. Lett. 2019; 21: 623
    • 29c Zhu Y, Shen Z. Adv. Synth. Catal. 2017; 359: 3515
    • 30a Duda B, Tverdomed SN, Ionin BI, Röschenthaler G.-V. Eur. J. Org. Chem. 2012; 3684
    • 30b Vanjari R, Dutta S, Gogoi MP, Gandon V, Sahoo AK. Org. Lett. 2018; 20: 8077
    • 31a Bürger M, Loch MN, Jones PG, Werz DB. Chem. Sci. 2020; 11: 1912
    • 31b Bürger M, Röttger SH, Loch MN, Jones PG, Werz DB. Org. Lett. 2020; 22: 5025
    • 32a Li J, Zhu Z, Yang S, Zhang Z, Wu W, Jiang H. J. Org. Chem. 2015; 80: 3870
    • 32b Han Z, Zhang L, Li Z, Fan R. Angew. Chem. Int. Ed. 2014; 53: 6805
    • 32c Zhang J, Wang J.-Y, Huang M.-H, Hao W.-J, Tu X.-C, Tu S.-J, Jiang B. J. Org. Chem. 2020; 85: 7036
    • 33a Fujino D, Yorimitsu H, Osuka A. J. Am. Chem. Soc. 2014; 136: 6255
    • 33b Tian P.-P, Cai S.-H, Liang Q.-J, Zhou X.-Y, Xu Y.-H, Loh T.-P. Org. Lett. 2015; 17: 1636
    • 33c Zhao F, Zhang D, Nian Y, Zhang L, Yang W, Liu H. Org. Lett. 2014; 16: 5124
    • 34a Mishra S, Aponick A. Angew. Chem. Int. Ed. 2019; 58: 9485
    • 34b Martín-Mejías I, Aragoncillo C, Yanai H, Hoshikawa S, Fujimoto Y, Matsumoto T, Almendros P. Chem. Commun. 2020; 56: 1795
    • 35a Miao T, Xia D, Li Y, Li P, Wang L. Chem. Commun. 2015; 52: 3175
    • 35b Ni S, Zhang Y, Xie C, Mei H, Han J, Pan Y. Org. Lett. 2015; 17: 5524
    • 35c Pan C, Chen Y, Song S, Li L, Yu J.-T. J. Org. Chem. 2016; 81: 12065
    • 35d Pan C, Zhang H, Zhu C. Tetrahedron Lett. 2016; 57: 595
  • 36 Sahoo H, Singh S, Baidya M. Org. Lett. 2018; 20: 3678
  • 37 Sahoo H, Ramakrishna L, Mandal A, Baidya M. Chem. Asian J. 2019; 14: 4549
  • 38 Chalotra N, Rizvi MA, Shah BA. Org. Lett. 2019; 21: 4793