Synlett 2021; 32(13): 1343-1353
DOI: 10.1055/a-1507-4153
cluster account
Perspectives on Organoheteroatom and Organometallic Chemistry

Chromium-Catalyzed Cross-Coupling Reactions by Selective Activation of Chemically Inert Aromatic C–O, C–N, and C–H Bonds

Xuefeng Cong
,
Xiaoming Zeng
This work was supported by the National Natural Science Foundation of China (nos. 21572175 and 21971168), and the Fundamental Research Funds for the Central Universities (20826041D4117).


Abstract

Transition-metal-catalyzed cross-coupling has emerged as one of the most powerful and useful tools for the formation of C–C and C–heteroatom bonds. Given the shortage of resources of precious metals on Earth, the use of Earth-abundant metals as catalysts in developing cost-effective strategies for cross-coupling is a current trend in synthetic chemistry. Compared with the achievements made using first-row nickel, iron, cobalt, and even manganese catalysts, the group 6 metal chromium has rarely been used to promote cross-coupling. This perspective covers recent advances in chromium-catalyzed cross-coupling reactions in transformations of chemically inert C(aryl)–O, C(aryl)–N, and C(aryl)–H bonds, offering selective strategies for molecule construction. The ability of low-valent Cr with a high-spin state to participate in two-electron oxidative addition is highlighted; this is different from the mechanism involving single-electron transfer that is usually assigned to chromium-mediated transformations.

1 Introduction

2 Chromium-Catalyzed Kumada Coupling of Nonactivated C(aryl)–O and C(aryl)–N Bonds

3 Chromium-Catalyzed Reductive Cross-Coupling of Two Nonactivated C(aryl)–Heteroatom Bonds

4 Chromium-Catalyzed Functionalization of Nonactivated C(aryl)–H Bonds

5 Conclusions and Outlook



Publication History

Received: 10 April 2021

Accepted after revision: 11 May 2021

Accepted Manuscript online:
11 May 2021

Article published online:
25 June 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Metal-Catalyzed Cross-Coupling Reactions, 2nd ed., Vol. 1. de Meijere A, Diederich F. Wiley-VCH; Weinheim: 2004
  • 2 Science of Synthesis: Cross Coupling and Heck-Type Reactions 1: C–C Cross Coupling Using Organometallic Partners. Molander GA. Thieme; Stuttgart: 2013
  • 3 Science of Synthesis: Cross Coupling and Heck-Type Reactions 2: C–C Cross Coupling of Acidic C–H Nucleophiles, Wolfe J. P. Thieme; Stuttgart: 2013
  • 4 Science of Synthesis: Cross Coupling and Heck-Type Reactions 3: C–C Cross Coupling Via C–H Activation. Larhed M. Thieme; Stuttgart 2013:
  • 5 Suzuki A. Angew. Chem. Int. Ed. 2011; 50: 6722
  • 6 Negishi E.-i. Angew. Chem. Int. Ed. 2011; 50: 6738
  • 7 Palladium-Catalyzed Coupling Reactions: Practical Aspects and Future Developments, Molnár A. Wiley–VCH; Weinheim: 2013
    • 8a Johansson Seechurn CC. C, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
    • 8b Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
    • 8c Wang J, Dong G. Chem. Rev. 2019; 119: 7478

      For selected reviews, see:
    • 10a Trost BM, Toste FD, Pinkerton AB. Chem. Rev. 2001; 101: 2067
    • 10b Gunanathan C, Milstein D. Chem. Rev. 2014; 114: 12024
    • 11a Ni- and Fe-Based Cross-Coupling Reactions . Correa A. Springer International; Cham: 2017
    • 11b Standley EA, Tasker SZ, Jensen KL, Jamison TF. Acc. Chem. Res. 2015; 48: 1503
    • 11c Diccianni J, Lin Q, Diao T. Acc. Chem. Res. 2020; 53: 906
    • 12a Sherry BD, Fürstner A. Acc. Chem. Res. 2008; 41: 1500
    • 12b Sun C.-L, Li B.-J, Shi Z.-J. Chem. Rev. 2011; 111: 1293
    • 12c Shang R, Ilies L, Nakamura E. Chem. Rev. 2017; 117: 9086
    • 12d Nakamura M, Matsuo K, Ito S, Nakamura E. J. Am. Chem. Soc. 2004; 126: 3686
    • 12e Shang R, Ilies L, Matsumoto A, Nakamura E. J. Am. Chem. Soc. 2013; 135: 6030
    • 12f Shang R, Ilies L, Asako S, Nakamura E. J. Am. Chem. Soc. 2014; 136: 14349
    • 12g Shang R, Ilies L, Nakamura E. J. Am. Chem. Soc. 2015; 137: 7660
    • 12h Shang R, Ilies L, Nakamura E. J. Am. Chem. Soc. 2016; 138: 10132
    • 12i Ilies L, Itabashi Y, Shang R, Nakamura E. ACS Catal. 2017; 7: 89
    • 12j Doba T, Matsubara T, Ilies L, Shang R, Nakamura E. Nat. Catal. 2019; 2: 400
    • 12k Nakamura E, Yoshikai N. J. Org. Chem. 2010; 75: 6061
    • 12l Nakamura E, Sato K. Nat. Mater. 2011; 10: 158
    • 13a Gao K, Yoshikai N. Acc. Chem. Res. 2014; 47: 1208
    • 13b Cheng J, Wang L, Wang P, Deng L. Chem. Rev. 2018; 118: 9930
    • 13c Cahiez G, Moyeux A. Chem. Rev. 2010; 110: 1435
    • 13d Liu W, Sahoo B, Junge K, Beller M. Acc. Chem. Res. 2018; 51: 1858
    • 16a Kochi JK, Singleton DM. J. Am. Chem. Soc. 1968; 90: 1582
    • 16b Okude Y, Hirano S, Hiyama T, Nozaki H. J. Am. Chem. Soc. 1977; 99: 3179
    • 16c Takai K, Nitta K, Utimoto K. J. Am. Chem. Soc. 1986; 108: 7408
    • 16d Takai K, Tagashira M, Kuroda T, Oshima K, Utimoto K, Nozaki H. J. Am. Chem. Soc. 1986; 108: 6048
  • 17 Gil A, Albericio F, Álvarez M. Chem. Rev. 2017; 117: 8420
    • 18a Fürstner A, Shi N. J. Am. Chem. Soc. 1996; 118: 2533
    • 18b Fürstner A, Shi N. J. Am. Chem. Soc. 1996; 118: 12349
    • 19a Schwarz JL, Schäfers F, Tlahuext-Aca A, Lückemeier L, Glorius F. J. Am. Chem. Soc. 2018; 140: 12705
    • 19b Schwarz JL, Huang H.-M, Paulisch TO, Glorius F. ACS Catal. 2020; 10: 1621
    • 19c Xiong Y, Zhang G. Org. Lett. 2016; 18: 5094
    • 19d Hirao Y, Katayama Y, Mitsunuma H, Kanai M. Org. Lett. 2020; 22: 8584
    • 19e Schwarz JL, Kleinmans R, Paulisch TO, Glorius F. J. Am. Chem. Soc. 2020; 142: 2168
    • 19f Kang JY, Connell BT. J. Am. Chem. Soc. 2010; 132: 7826
    • 19g Usanov DL, Yamamoto H. J. Am. Chem. Soc. 2011; 133: 1286
    • 19h Liu X, Li X, Chen Y, Hu Y, Kishi Y. J. Am. Chem. Soc. 2012; 134: 6136
    • 19i Smith KM. Coord. Chem. Rev 2006; 250: 1023
  • 21 Wenkert E, Michelotti EL, Swindell CS. J. Am. Chem. Soc. 1979; 101: 2246
  • 22 Dankwardt JW. Angew. Chem. Int. Ed. 2004; 43: 2428
    • 23a Tobisu M, Shimasaki T, Chatani N. Angew. Chem. Int. Ed. 2008; 47: 4866
    • 23b Kakiuchi F, Usui M, Ueno S, Chatani N, Murai S. J. Am. Chem. Soc. 2004; 126: 2706
    • 23c Ueno S, Mizushima E, Chatani N, Kakiuchi F. J. Am. Chem. Soc. 2006; 128: 16516
    • 23d Guan B.-T, Xiang S.-K, Wang B.-Q, Sun Z.-P, Wang Y, Zhao K.-Q, Shi Z.-J. J. Am. Chem. Soc. 2008; 130: 3268
    • 23e Álvarez-Bercedo P, Martin R. J. Am. Chem. Soc. 2010; 132: 17352
    • 23f Zhao Y, Snieckus V. J. Am. Chem. Soc. 2014; 136: 11224
    • 24a Murakami K, Ohmiya H, Yorimitsu H, Oshima K. Org. Lett. 2007; 9: 1569
    • 24b Yan J, Yoshikai N. Org. Lett. 2017; 19: 6630
    • 24c Steib AK, Kuzmina OM, Fernandez S, Flubacher D, Knochel P. J. Am. Chem. Soc. 2013; 135: 15346
    • 24d Yan J, Yoshikai N. Org. Chem. Front. 2017; 4: 1972
    • 24e Hirscher NA, Sierra DP, Agapie T. J. Am. Chem. Soc. 2019; 141: 6022
    • 24f Yin J, Li J, Wang G.-X, Yin Z.-B, Zhang W.-X, Xi Z. J. Am. Chem. Soc. 2019; 141: 4241
  • 25 Cong X, Tang H, Zeng X. J. Am. Chem. Soc. 2015; 137: 14367
  • 26 Tang J, Luo M, Zeng X. Synlett 2017; 28: 2577
  • 27 Rong Z, Luo M, Zeng X. Org. Lett. 2019; 21: 6869
    • 28a Li J, Ren Q, Cheng X, Karaghiosoff K, Knochel P. J. Am. Chem. Soc. 2019; 141: 18127
    • 28b Steib AK, Kuzmina OM, Fernandez S, Malhotra S, Knochel P. Chem. Eur. J. 2015; 21: 1961
    • 28c Bellan AB, Kuzmina OM, Vetsova VA, Knochel P. Synthesis 2017; 49: 188
  • 29 Fan F, Tang J, Luo M, Zeng X. J. Org. Chem. 2018; 83: 13549
    • 30a Ouyang K, Hao W, Zhang W.-X, Xi Z. Chem. Rev. 2015; 115: 12045
    • 30b Wang Q, Su Y, Li L, Huang H. Chem. Soc. Rev. 2016; 45: 1257
    • 30c García-Cárceles J, Bahou KA, Bower JF. ACS Catal. 2020; 10: 12738
    • 31a Ueno S, Chatani N, Kakiuchi F. J. Am. Chem. Soc. 2007; 129: 6098
    • 31b Koreeda T, Kochi T, Kakiuchi F. J. Am. Chem. Soc. 2009; 131: 7238
    • 31c Tobisu M, Nakamura K, Chatani N. J. Am. Chem. Soc. 2014; 136: 5587
  • 32 Blanksby SJ, Ellison GB. Acc. Chem. Res. 2003; 36: 255
  • 33 Cong X, Fan F, Ma P, Luo M, Chen H, Zeng X. J. Am. Chem. Soc. 2017; 139: 15182
    • 35a Ackerman LK. G, Lovell MM, Weix DJ. Nature 2015; 524: 454
    • 35b Huang L, Ackerman LK. G, Kang K, Parsons A, Weix DJ. J. Am. Chem. Soc. 2019; 141: 10978
  • 36 Cao Z.-C, Shi Z.-J. J. Am. Chem. Soc. 2017; 139: 6546
  • 37 Tang J, Liu LL, Yang S, Cong X, Luo M, Zeng X. J. Am. Chem. Soc. 2020; 142: 7715
  • 38 Tang J, Fan F, Cong X, Zhao L, Luo M, Zeng X. J. Am. Chem. Soc. 2020; 142: 12834
    • 39a Zhao Q, Meng G, Nolan SP, Szostak M. Chem. Rev. 2020; 120: 1981
    • 39b He J, Wasa M, Chan KS. L, Shao Q, Yu J.-Q. Chem. Rev. 2017; 117: 8754
    • 39c Rej S, Ano Y, Chatani N. Chem. Rev. 2020; 120: 1788
    • 39d Yi H, Zhang G, Wang H, Huang Z, Wang J, Singh AK, Lei A. Chem. Rev. 2017; 117: 9016
    • 39e Li C.-J. Wuli Huaxue Xuebao 2019; 35: 905
    • 39f Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
    • 39g Dong Z, Ren Z, Thompson SJ, Xu Y, Dong G. Chem. Rev. 2017; 117: 9333
    • 39h Yang Y, Lan J, You J. Chem. Rev. 2017; 117: 8787
  • 40 Kuzmina OM, Knochel P. Org. Lett. 2014; 16: 5208
  • 41 Tang J, Liu P, Zeng X. Chem. Commun. 2018; 54: 9325
  • 42 Chen M, Doba T, Sato T, Razumkov H, Ilies L, Shang R, Nakamura E. J. Am. Chem. Soc. 2020; 142: 4883
  • 43 Li Y, Deng G, Zeng X. Organometallics 2016; 35: 747
  • 44 Liu P, Chen C, Cong X, Tang J, Zeng X. Nat. Commun. 2018; 9: 4637