Synthesis 2021; 53(20): 3769-3776
DOI: 10.1055/a-1516-8481
paper

Copper-Catalyzed Sulfonylation of Cyclobutanone Oxime Esters with Sulfonyl Hydrazides

Bingbing Dong
a   Green Catalysis Center, and College of Chemistry; Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province; Zhengzhou University, No.100 Science Avenue, Zhengzhou 450001, P. R. of China
,
Jiansha Lu
a   Green Catalysis Center, and College of Chemistry; Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province; Zhengzhou University, No.100 Science Avenue, Zhengzhou 450001, P. R. of China
,
Honghao Bao
a   Green Catalysis Center, and College of Chemistry; Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province; Zhengzhou University, No.100 Science Avenue, Zhengzhou 450001, P. R. of China
,
Yuanyuan Zhang
a   Green Catalysis Center, and College of Chemistry; Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province; Zhengzhou University, No.100 Science Avenue, Zhengzhou 450001, P. R. of China
,
Yingguo Liu
b   Division of Molecular Catalysis & Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, No.100 Science Avenue, Zhengzhou 450001, P. R. of China
,
Yuting Leng
a   Green Catalysis Center, and College of Chemistry; Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province; Zhengzhou University, No.100 Science Avenue, Zhengzhou 450001, P. R. of China
› Author Affiliations
This work was supported by grants from the Top Youth Talent Fund of Zhengzhou University and The State Key Laboratory of Bio-organic and Natural Products Chemistry, Chinese Academy of Sciences (CAS) (SKLBNPC18440).


Abstract

A copper-catalyzed radical cross-coupling of cyclobutanone oxime esters with sulfonyl hydrazides has been developed. The copper-based catalytic system proved crucial for cleavage of the C−C bond of cyclobutanone oximes and for selective C–S bond-formation involving persistent sulfonyl-metal radical intermediates. This protocol is distinguished by the low-cost catalytic system, which does not require ligand, base, or toxic cyanide salt, and by the use of readily accessible starting materials, as well as broad substrate scope, providing an efficient approach to various diversely substituted cyano-containing sulfones.

Supporting Information

Primary Data



Publication History

Received: 27 April 2021

Accepted after revision: 25 May 2021

Accepted Manuscript online:
25 May 2021

Article published online:
01 July 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Gong JC, Fuchs PL. J. Am. Chem. Soc. 1996; 118: 4486
    • 1b McCarroll AJ, Walton JC. Angew. Chem. Int. Ed. 2001; 40: 2224 ; Angew. Chem. 2001, 113, 2282
    • 1c Liu C, Tang S, Liu D, Yuan J, Zheng L, Meng L, Lei A. Angew. Chem. Int. Ed. 2012; 51: 3638 ; Angew. Chem. 2012, 124, 3698
    • 2a Liu C, Liu D, Lei A. Acc. Chem. Res. 2014; 47: 3459
    • 2b Xuan J, Zeng TT, Feng ZJ, Deng QH, Chen JR, Lu LQ, Xiao WJ, Alper H. Angew. Chem. Int. Ed. 2015; 54: 1625
    • 2c Kawamoto T, Geib SJ, Curran DP. J. Am. Chem. Soc. 2015; 137: 8617
  • 3 Claridge R, Fischer HJ. J. Phys. Chem. 1983; 87: 1960
    • 4a Yan M, Lo JC, Edwards JT, Baran PS. J. Am. Chem. Soc. 2016; 138: 12692
    • 4b Zheng CH, Lu FL, Lu HW, Xin J, Deng Y, Yang DL, Wang SC, Huang ZL, Gao M, Lei A. Chem. Commun. 2018; 54: 5574
    • 4c Griesser M, Chauvin JP. R, Pratt DA. Chem. Sci. 2018; 9: 7218
  • 5 Studer A, Curran DP. Nat. Chem. 2014; 6: 765
  • 6 Wang H, Lu Q, Qian C, Liu C, Liu W, Chen K, Lei A. Angew. Chem. Int. Ed. 2016; 55: 1094
  • 7 Wang SC, Tang S, Lei A. Sci. Bull. 2018; 63: 1006
  • 8 Jeffrey JL, Petronijevic FR, MacMillan DW. C. J. Am. Chem. Soc. 2015; 137: 8404
    • 9a Fleming FF. Nat. Prod. Rep. 1999; 16: 597
    • 9b May EL, Jacobson AE, Mattson MV, Traynor JR, Woods JH, Harris LS, Bowman ER, Aceto MD. J. Med. Chem. 2000; 43: 5030
    • 9c Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. J. Med. Chem. 2010; 53: 7902
    • 10a Li Z, Torres-Ochoa RO, Wang Q, Zhu J. Nat. Commun. 2020; 11: 403
    • 10b Chen J, He BQ, Wang PZ, Yu XY, Zhao QQ, Chen JR, Xiao WJ. Org. Lett. 2019; 21: 4359
    • 10c Anand D, He Y, Li L, Zhou L. Org. Biomol. Chem. 2019; 17: 533
    • 10d Zhao JF, Duan XH, Gu YR, Gao P, Guo LN. Org. Lett. 2018; 20: 4614
    • 10e Zhang JY, Duan XH, Yang JC, Guo LN. J. Org. Chem. 2018; 83: 4239
    • 10f Yu XY, Chen JR, Wang PZ, Yang MN, Liang D, Xiao WJ. Angew. Chem. Int. Ed. 2018; 57: 738
    • 10g Shen X, Zhao JJ, Yu S. Org. Lett. 2018; 20: 5523
    • 10h He M, Yan Z, Zhu F, Lin S. J. Org. Chem. 2018; 83: 15438
    • 10i An Z, Jiang Y, Guan X, Yan R. Chem. Commun. 2018; 54: 10738
    • 10j Ai W, Liu Y, Wang Q, Lu Z, Liu Q. Org. Lett. 2018; 20: 409
    • 10k Gu YR, Duan XH, Yang L, Guo LN. Org. Lett. 2017; 19: 5908
  • 11 Zhao B, Shi Z. Angew. Chem. Int. Ed. 2017; 56: 12727 ; Angew. Chem. 2017, 129, 12901
  • 12 Yu XY, Zhao QQ, Chen J, Chen JR, Xiao WJ. Angew. Chem. Int. Ed. 2018; 57: 15505 ; Angew. Chem. 2018, 130, 15731
  • 13 Zhou XS, Cheng Y, Chen J, Yu XY, Xiao WJ, Chen JR. ChemCatChem 2019; 11: 5300
    • 14a Yu W, Hu P, Fan Y, Yu C, Yan X, Li X, Xu X. Org. Biomol. Chem. 2015; 13: 3308
    • 14b Li X, Xu X, Tang Y. Org. Biomol. Chem. 2013; 11: 1739
    • 14c Li X, Xu X, Hu P, Xiao X, Zhou C. J. Org. Chem. 2013; 78: 7343
    • 14d Li X, Xu X, Zhou C. Chem. Commun. 2012; 48: 12240
    • 14e Meadows DC, Sanchez T, Neamati N, North TW, Gervay-Hague J. Bioorg. Med. Chem. 2007; 15: 1127
  • 15 Parent EE, Katzenellenbogen JA. J. Med. Chem. 2007; 50: 1028
  • 16 Ai WY, Liu YQ, Wang Q, Lu ZL, Liu Q. Org. Lett. 2018; 20: 409
    • 17a Zhou L, Tang S, Qi X, Lin C, Liu K, Liu C. Org. Lett. 2014; 16: 3404
    • 17b Gephart RT. III, Huang DL, Aguila MJ. B, Schmidt G, Shahu A, Warren TH. Angew. Chem. Int. Ed. 2012; 51: 6488
    • 17c Jang ES, McMullin CL, Kaß M, Meyer K, Cundari TR, Warren TH. J. Am. Chem. Soc. 2014; 136: 10930
    • 17d Liu ZL, Chen H, Lv Y, Tan XQ, Shen H, Yu HZ. J. Am. Chem. Soc. 2018; 140: 6169
    • 17e Jiao YH, Chiou MF, Li YJ, Bao HL. ACS Catal. 2019; 9: 5191
    • 17f Zhu XT, Deng WL. Chiou M. F, Ye CQ, Jian WJ, Zeng YH, Jiao YH. Ge L, Li YJ, Zhang XH. J. Am. Chem. Soc. 2019; 141: 548
    • 17g Zeng YH, Chiou MF. Zhu X. T, Cao J, Lv DQ, Jian WJ, Li YJ, Zhang XH, Bao HL. J. Am. Chem. Soc. 2020; 142: 18014
    • 17h Liu ZL, Shen H, Xiao HW, Wang ZT, Zhu L, Li CZ. Org. Lett. 2019; 21: 5201
    • 17i He JY, Chen GL, Zhang BX, Li Y, Chen JR, Xiao WJ, Liu F, Li CZ. Chem 2020; 6: 1149
    • 17j Zhu L, Fang YW, Li CZ, Zhu L, Fang YW, Li CZ. Chin. J. Chem. 2020; 38: 787
    • 18a MacKenzie IA, Wang LF, Onuska NP. R, Williams OF, Begam K, Moran AM, Dunietz BD, Nicewicz DA. Nature 2020; 580: 76
    • 18b Gu QS, Li ZL, Liu XY. Acc. Chem. Res. 2020; 53: 170
    • 18c Wang DH, Wang F, Chen PH, Lin ZY, Liu GS. Angew. Chem. Int. Ed. 2017; 56: 2054 ; Angew. Chem. 2017, 8, 2086
  • 19 CCDC 2033445 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
  • 20 Yu XY, Wang PZ, Yan DM, Lu B, Chen JR, Xiao WJ. Adv. Synth. Catal. 2018; 360: 3601
  • 21 Tian L, Gao S, Wang R, Li Y, Tang C, Shi L, Fu J. Chem. Commun. 2019; 55: 5347
  • 22 Zhang G, Fu JG, Zhao Q, Zhang GS, Li MY, Feng CG, Lin GQ. Chem. Commun. 2020; 56: 4688