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Introduction
It is well established that a sedentary lifestyle is associated with an 
increased incidence of chronic diseases, such as type 2 diabetes, 
cancers, cardiovascular diseases, and comorbidities [1]. To reduce 
this burden, effective interventions need to be discerned and im-
plemented. Physical activity is an accessible positive lifestyle habit 
that can contribute to weight loss, changes in body composition, 
and improved cardiorespiratory fitness [2–9]. Physical activity in-
terventions have shown to be successful in increasing an individu-
al’s quality of life [10, 11] and continue to support the need for 
physical activity across all races, ethnicities, genders, and age 
groups. Once thought to be detrimental to the developing fetus, 
exercise is now recommended for most pregnant women [12]. The 
notion of increasing physical activity interventions in pregnancy is 

gaining traction in that this period is a crucial timepoint to improve 
offspring outcomes.

In 1989, the epidemiologist David Barker coined the Develop-
mental Origins of Health and Disease Hypothesis by linking small 
for gestational age infants with increased incidence of cardiovas-
cular disease in adulthood [13]. This hypothesis postulates that if 
the fetus is exposed to unfavorable environmental conditions in 
utero and during the early stages of development, the fetus will un-
dergo permanent metabolic adaptations that allow for survival in 
the unfavorable intrauterine environment. However, these adap-
tations may also lead to the development of diseases after birth 
[14]. Excess maternal weight gain and obesity during pregnancy 
have been known to contribute to poor fetal and maternal out-
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Epidemiological studies show that low birth weight is associ-
ated with mortality from cardiovascular disease in adulthood, 
indicating that chronic diseases could be influenced by hormo-
nal or metabolic insults encountered in utero. This concept, 
now known as the Developmental Origins of Health and Disease 
hypothesis, postulates that the intrauterine environment may 
alter the structure and function of the organs of the fetus as 
well as the expression of genes that impart an increased vulner-
ability to chronic diseases later in life. Lifestyle interventions 
initiated during the prenatal period are crucial as there is the 
potential to attenuate progression towards chronic diseases. 
However, how lifestyle interventions such as physical activity 
directly affect human offspring metabolism and the potential 
mechanisms involved in regulating metabolic balance at the 
cellular level are not known. The purpose of this review is to 
highlight the effects of exercise during pregnancy on offspring 
metabolic health and emphasize gaps in the current human 
literature and suggestions for future research.
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comes related to risk factors/incidence for cardiometabolic disease 
[15] making pregnancy a potentially viable target for intervention. 
The cyclic nature of cardiometabolic diseases continuing from 
mother to child and the subsequent perpetuation of metabolic dis-
ease across generations marks a potentially dire need for interven-
tions to halt this vicious cycle. Luckily, pregnancy has been identi-
fied to have the potential to be a “teachable moment” for mothers 
[16] due to the increased contact with healthcare providers and 
increased concern for the health of the fetus. The purpose of this 
review is to provide a synopsis on physical activity as a method of 
improving neonatal metabolic health. This review will begin with 
general guidelines on physical activity during pregnancy and a brief 
section on maternal responses. It will then turn its attention toward 
offspring responses to maternal physical activity that encompass 
changes in whole-body and cellular metabolism. Finally, potential 
areas of investigation for future research will be presented.

Exercise During Pregnancy

Physical activity recommendations
Pregnant women can benefit from physical activity to a similar ex-
tent as nonpregnant women [17], and various forms of physical ac-
tivity have been deemed safe and appropriate during pregnancy 
[12, 17–19]. The American College of Obstetricians and Gynecolo-
gists (ACOG) currently recommends that women who begin their 
pregnancy with a “healthy lifestyle” (e. g., exercise, proper nutri-
tion, nonsmoking) continue to maintain those healthy habits 
throughout their pregnancy [12]. Women not achieving “healthy 
lifestyle” habits should accordingly be encouraged to establish 
healthier habits and routines throughout the pre-pregnancy and 
pregnancy periods [12]. During pregnancy, 150 minutes of mod-
erate intensity aerobic activity per week is recommended [12, 19]. 
Those who habitually engaged in vigorous intensity aerobic activ-
ity or who were physically active before pregnancy can continue 
their activities [12]. Consistent with recommendations from the 
American College of Sports Medicine (ACSM) [20], a combination 
of aerobic and resistance exercise appears to deliver benefits for 
both the mother and infant. This review will highlight beneficial 
changes with primarily aerobic exercise/physical activity.

For women with uncomplicated pregnancies, fears of physical 
activity and exercise resulting in adverse outcomes have yet to be 
validated [21–24]. While these exercise recommendations have 
been in place for over a decade, the prevalence of active pregnant 
women is still alarmingly low. Among pregnant women, walking is 
the most frequently reported activity, usually occurring during the 
first trimester [25, 26]. Across the United States however, it is esti-
mated that as few as 15.8 % of women are physically active at the 
recommended level during pregnancy [27]. Only 21.5 % of a cohort 
of healthy pregnant women in Ireland reported meeting the cur-
rent ACOG recommendations of physical activity with 11.7 % re-
porting no physical activity at all [28]. Studies across other coun-
tries report similar numbers [29–31]. Further, for those who do 
participate in structured physical activity during pregnancy, the 
intensity, frequency, and volume may not be at levels sufficient to 
incur the adaptations induced with an active lifestyle [32]. Aerobic 
exercise interventions have been found to minimize gestational 

weight gain when combined with diet or with exercise alone [33]. 
However, a recent multi-site randomized clinical trial that managed 
to increase physical activity showed a modest effect between the 
intervention and control group (−1.59 kg) on total gestational 
weight gain [34] and did not prevent gestational diabetes in the 
mother [35]. Nonetheless, exercise has been shown to be protec-
tive against disorders such as preeclampsia and should be promot-
ed due to several beneficial physiological adaptations [36–40].

Maternal responses during pregnancy
The scope of this article is offspring outcomes in response to ma-
ternal exercise; therefore, this review will briefly touch upon ma-
ternal adaptations. It should be noted that the effects of exercise 
on pregnant women has been reviewed extensively elsewhere [41–
43]. During a healthy pregnancy, many physiological adaptations 
occur in the cardiovascular system to support adequate oxygen and 
nutrient supply to the fetus. Cardiac output is increased up until 
term by 30- to 50 percent due to both an increase in stroke volume 
and heart rate (HR) [44]. An additional increase in tidal volume is 
responsible for a 30- to 40 percent increase in minute ventilation 
in pregnancy. Although many of these changes would assume a rise 
in oxygen consumption, there is only a slight 15- to 20 percent in-
crease, resulting in an increase in alveolar and arterial PaO2 (partial 
pressure of oxygen) and a fall in PaCO2 (partial pressure of carbon 
dioxide) levels [45]. These and other positive adaptations that occur 
with pregnancy are amplified with regular physical activity and ex-
ercise. Cardiovascular fitness, measured by maximal oxygen uptake 
(VO2max), is rarely reported with pregnancy due to theoretical risk 
of fetal distress. However, there are instances where this has been 
performed in pregnancy [46]. As central responses (e. g. stroke vol-
ume, HR, cardiac output, etc.) do not differ significantly between 
pregnant and nonpregnant women during submaximal exercise 
[47], it seems that alterations in the periphery are at play.

Many of the peripheral cardiovascular changes seen in physical-
ly active mothers help to ensure the appropriate trafficking of nu-
trients to the developing fetus. Because the placenta is the central 
organ linking the fetus and the maternal environment, it is respon-
sible for bridging the effects of external stimuli on maternal health 
status to the fetus. Placental growth is largely dictated through 
substrate availability and blood flow and is calculated as the prod-
uct of substrate concentration measured in arterial blood and blood 
delivery to the placental bed, with a heavy focus on glucose [48–
50]. With maternal exercise, blood flow is diverted from the pla-
centa to exercising muscles and skin [51] which is proportional to 
the exercise intensity and muscle mass used [48]. After the cessa-
tion of exercise, blood flow quickly returns to normal [48]. Due to 
the invasive nature of measuring fetoplacental blood flow, exercise-
induced blood redistribution has not been measured in humans. 
Animal data translated to humans, however, indicates blood flow 
redistribution associated with exercise intensities up to 95 % 
VO2max does not compromise the fetus. Repeated bouts of exer-
cise at 95–100 % VO2max, however, are associated with negative 
effects on fetal growth confirming submaximal exercise does not 
compromise blood delivery to the fetus [43, 52–54].

Additionally, maternal exercise impacts placental gene expres-
sion to optimize fetal nutrient delivery and fetoplacental growth 
[55–57]. Those who performed strenuous exercise during preg-
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nancy had increased T-type amino acid transporter 1 (TAT1), neu-
tral amino acid transporter A (ASCT1), mitochondrial branched 
chain amino transferase (mBCAT), and glutamine sythetase (GLUL) 
placental expression indicating maternal exercise enhances amino 
acid transport pathways [58]. Genes associated with fatty acid me-
tabolism are similarly altered with maternal exercise [59–61]. 
Mothers who met physical activity guidelines also showed improve-
ments in the expression of genes involved in glucose transport as 
well as mammalian target of rapamycin (mTOR) and insulin signal-
ing in the placenta, further highlighting the benefits of maternal 
exercise in the relationship between the maternal environment, 
placenta, and fetal environment [55]. Finally, reactive oxygen spe-
cies (ROS) production in the placenta was also lowered with exer-
cise suggesting improved oxygen metabolism [57]. All these ben-
eficial adaptations are imparted in the offspring to ensure adequate 
growth.

Effects of Maternal Exercise on Offspring

Anthropometrics
Infant birth weight allows for a crude measurement of newborn 
health and is an indicator of the fetal environment. Both low and 
high birth weights have been shown to be related to obesity, met-
abolic disease, and cardiovascular disease later in life [62–64]. The 
pregnancy field has outlined a clear U-shaped association between 
offspring birth weight and long-term metabolic complications [65]. 
Many of these have been outlined in epidemiological studies. For 
example, studies on famine in pregnancy concluded that infants 
exposed to conditions of malnutrition have reductions in glucose 
tolerance later in life [66]. In the case of maternal obesity, infants 
have increases in childhood body mass index (BMI), adiposity, and 
increased risk of diabetes as adults [67, 68]. Therefore, there is a 
need to fine tune this U-shaped association with lifestyle interven-
tions, with one of the most prominent interventions being exer-
cise.

Largely conflicting evidence exists for the support of structured 
maternal exercise affecting infant birth weight. Maternal exercise 
during pregnancy has been associated with increased infant lean 
mass compared to infants of sedentary mothers [69]. Other stud-
ies have shown that maternal exercise has been shown to be asso-
ciated with a reduction in the upper quantiles of birth weight dis-
tributions [70, 71]. There are reports showing that maternal exer-
cise may not affect infant weight at birth [72]; however, a recent 
study has shown that infants exposed to maternal exercise had in-
creased adiposity at 7-years of age [69]. Finally, a recent meta-anal-
ysis conducted by Guillemette et al. concluded prenatal maternal 
exercise does not significantly impact infant birth weight nor fat 
mass nor large-for-gestational-age risk [73]. These studies high-
light the continued need for more studies focused on maternal ex-
ercise and infant birth weight. Indeed, studies of regular aerobic 
exercisers and those who engage in vigorous physical activities, 
such as elite athletes, show that infants were born with lower birth 
weight [74, 75]. Thus, there might be a dose-response relationship 
between maternal exercise, again lending credence to the fine-
tuned nature of maternal pregnancy outcomes and the U-shape 

association that also exists in other aspects of pregnancy such as 
that in gestational weight gain [76].

Research on other forms of physical activity, such as non-struc-
tured leisure time physical activity (LTPA) has also been studied. 
Research has shown that LTPA does not increase the chance of a 
small for gestational age newborn [77]. At a minimum, adherence 
to physical activity guidelines has been shown to reduce risk of de-
livering large for gestational age newborn with no effect on deliv-
ering small for gestational age [71, 78–80]. LTPA is thought to nor-
malize birth weight into a healthy range by normalizing maternal 
blood glucose, reducing maternal insulin resistance, and altering 
placental blood flow and nutrient delivery [32, 49, 81, 82]. While 
remaining cautious to not over-interpret these results, enough ev-
idence of lasting benefits of LTPA during pregnancy exists to en-
courage larger, prospective studies to understand if prenatal inter-
ventions might be an effective way of preventing childhood obe-
sity in humans.

With limited data on long-term outcomes of offspring to exer-
cising mothers in humans, rodent studies may provide additional 
insights. In mice, maternal exercise improves offspring body com-
position [83, 84] or shows no effect [72, 85]. Interestingly, when 
fed a high-fat diet, offspring of trained mothers gained less weight 
and stored less fat compared to offspring of untrained mothers, 
which suggests a protective effect of exercise [72, 83]. While ro-
dent findings may not be applicable in human research, due to fac-
tors such as uterine structure, length of gestation, size of litters, 
the idea of exercise as a protective measure to support a more fa-
vorable body composition is persuading.

Cardiovascular fitness
Aerobic fitness (VO2max) is the product of central cardiac output 
and the peripheral oxygen extractability of the working tissues [86]. 
Exercise training in non-pregnant cohorts increases aerobic fitness 
via coordinated adaptations of these central and peripheral com-
ponents and the majority of work in this area has been substanti-
ated in the animal literature. Prior data has shown that rodent off-
spring born to mothers who underwent aerobic exercise before 
and during pregnancy, have higher aerobic fitness [87] and physi-
cal activity levels [88] providing evidence that maternal exercise is 
capable of programming the offspring’s cardiovascular system in-
cluding cardiac output, macrovascular compliance, and skeletal 
muscle oxidative capacity. These are summarized in the subsequent 
paragraphs.

A hallmark adaptation of chronic exercise training is an increase 
in stroke volume and increased heart rate variability [89–93]. Al-
though the effect of maternal exercise on offspring cardiovascular 
remodeling is not yet fully understood, exercise training has been 
shown to improve ejection fraction and left ventricular mass [94]. 
Exercise training also prevents obesity-induced impairments in car-
diac output by attenuating pathological left ventricular hypertro-
phy and preserving the ejection fraction of adult rodent offspring 
[95]. While the mechanisms are not clear, studies have shown that 
maternal exercise epigenetically programs the offspring’s cardiac 
transcriptome, increasing the expression and activity of genes in-
volved in mitochondrial biogenesis [94, 96] – an important char-
acteristic for many offspring peripheral adaptations.
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Although indirect, aerobic exercise generally improves cardiac 
function by decreasing afterload via structural and functional 
changes that increase vascular compliance [97–99]. Maternal ex-
ercise has been shown to improve endothelium-dependent vaso-
dilation in porcine offspring at birth, but this effect was blunted in 
the presence of NG-nitro-L-arginine methyl ester (L-NAME), a nitric 
oxide synthase inhibitor, suggesting increased nitric oxide bioavail-
ability is responsible for this improvement [100]. However, follow-
up studies indicated the effects of maternal exercise on offspring 
endothelium are transient and no longer evident in the months fol-
lowing birth in either healthy [101] or high-fat fed swine offspring 
[102]. Furthermore, endothelium-independent relaxation in the 
adult offspring exposed to maternal exercise was reduced, suggest-
ing maternal exercise may accelerate the age-related decline in 
smooth muscle compliance [101]. In rodents, maternal exercise 
did not alter the offspring’s endothelial-dependent or -independ-
ent relaxation in the months following delivery [103]. Similarly, 
Boonpattrawong et al. reported that maternal exercise alone had 
no effect on offspring vascular function but was protective against 
maternal obesity and high fat post-weaning diet. Interestingly, aer-
obic exercise improved nitric oxide bioavailability in the offspring 
fed the Western diet, despite the groups having similar levels of ni-
tric oxide synthase expression. The authors determined maternal 
exercise improved aortic one-carbon metabolism, which could 
have indirectly improved nitric oxide bioavailability by reducing the 
uncoupling of nitric oxide synthase in the mice fed the high fat diet 
[104]. Finally, Li et al., observed that maternal exercise reduced 
smooth muscle vasoconstriction responses to norepinephrine and 
Bay K8644 (a Ca2 +  channel agonist) of offspring born to spontane-
ous hypertensive mother rats. DNA bisulfite sequencing revealed 
maternal exercise increased methylation of the calcium voltage-
gated channel subunit α-1C (Cacna1c) promoter, preventing it from 
being upregulated during the programmed hypertension [105]. 
Taken together, these data suggest maternal exercise can serve a 
protective role in vascular function, but this protection is only evi-
dent with gestational obesity and/or postnatal insults (e. g., high-
fat diet).

Despite extensive work being conducted in animal models, it is 
still unclear if these results can be translated to humans. Limited 
data stems from a recent pilot study revealing moderate-intensity 
aerobic exercise in healthy pregnant women reduced the carotid 
intima-media thickness in offspring, suggesting improved vascular 
compliance [106]. Furthermore, there have been few studies to 
track the effectiveness of maternal exercise on cardiac function in 
humans. May et al. determined maternal aerobic exercise reduces 
fetal heart rate and increases heart rate variability at 36 weeks of 
gestation [107]. Follow-up analysis by this group revealed the in-
crease in heart rate variability was retained one month following 
delivery, providing evidence of a lasting cardiovascular phenotype 
[108]. Whether or not these other mechanisms, such as the nitric 
oxide system, are at play in humans remains to be discovered.

Skeletal muscle oxidative capacity
The peripheral component, oxygen extractability (A-VO2), of work-
ing skeletal muscle increases with aerobic training via increases in 
capillary density and mitochondrial biogenesis [109–111]. Like car-
diovascular changes, most of this work has been shown using ani-

mal models. Liu et al. was the first to establish a programming ef-
fect of maternal exercise on the oxidative capacity of rodent skel-
etal muscle. They and others [87] noted that exercise prior to and 
during pregnancy did not alter skeletal muscle capillary density but 
did increase markers of mitochondrial biogenesis including mito-
chondrial density and the enzymatic activity of citrate synthase 
and cytochrome C oxidase in the offspring [112]. Further, Siti et al. 
reported that maternal exercise in rodents increased the enzymat-
ic activity of electron transport system complexes II and III, reduced 
substrate-specific H2O2 production, and increased ADP-stimulated 
respiration rates in offspring skeletal muscle [113]. Peroxisomal 
proliferator-activated receptor y coactivator-1 alpha (PGC-1α) has 
been termed the “master regulator” of mitochondrial biogenesis 
and plays a key role in several exercise-induced adaptations [114–
117]. Therefore, it can be proposed that maternal exercise could 
epigenetically modify the PGC-1α gene (Ppargc1a), to ‘prime’ PGC-
1α expression in the offspring skeletal muscle. Son et. al provided 
the first evidence that exercise alone reduced the methylation sta-
tus of the offspring’s skeletal muscle Ppargc1a promoter, increas-
ing the expression of PGC-1α. Importantly, the authors noted sev-
eral other markers of mitochondrial biogenesis and oxidative ca-
pacity increased, including increased VO2max, proportion of 
oxidative muscle fiber (higher IIa/lower IIx), mitochondrial DNA 
(mtDNA) content, and markers of mitochondrial fission/fusion [87]. 
Taken together, there is accumulating evidence in rodents to sug-
gest maternal exercise enhances the oxidative capacity of the skel-
etal muscle of offspring via intrinsic changes in the mitochondrial 
phenotype. However, due to the invasive and longitudinal nature 
of these studies, these results have yet to be substantiated in hu-
mans.

Substrate metabolism
The increased prevalence of sedentary lifestyles and Western-style 
diets has led to a parallel rise in metabolic diseases including type 
2 diabetes, metabolic syndrome, and cardiovascular disease. A dis-
tinctive feature of these diseases is disordered substrate metabo-
lism and the eventual ectopic deposition of substrates and exces-
sive spillover of metabolites [118]. These aspects have significant 
relevance to the pregnancy field as well [119]. Generally, exercise 
interventions that aim to improve aspects of substrate handling is 
concomitant with enhancements in mitochondrial content/func-
tion to resolve the perturbations in metabolic stress. Due to the ro-
bust changes in the skeletal muscle mitochondrial phenotype elic-
ited by maternal exercise as described in the section above, there 
is a vested interest in determining whether it can protect the off-
spring from metabolic dysfunction and disease in the current obe-
sogenic environment.

Thus far, several investigations have determined maternal exer-
cise can reduce the offspring’s susceptibility to metabolic diseases 
by rescuing glucose intolerance, hyperlipidemia, endocrine dys-
regulation, and global oxidative stress in offspring born to mothers 
with obesity or that were fed a high-fat diet during pregnancy 
[115, 120–125]. These have been shown in models of rodent exer-
cise where mice were trained preconception and in combination 
of preconception and during pregnancy. Data suggests maternal 
exercise acts on tissues responsible for regulating whole-body me-
tabolism including the skeletal muscle, liver, and pancreas.
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The skeletal muscle is responsible for 70–80 % of postprandial 
glucose disposal, thus development of skeletal muscle insulin re-
sistance is a key tenant in the pathogenesis of type 2 diabetes [126]. 
Carter et al. was the first to show maternal exercise improves ex vivo 
glucose uptake in the skeletal muscle, but not adipose tissue of the 
rat offspring [127]. Although the exact mechanisms have yet to be 
elucidated, data suggests maternal exercise relieves skeletal mus-
cle Ppargc1a promoter hypermethylation, induced by maternal 
high-fat diet, which was associated with elevations in the mRNA 
expression of glucose transporter 4 (Glut4), cytochrome c (Cyt c), 
and cytochrome c oxidase subunit 4 (Cox4)[115]. Furthermore, a 
recent study indicated maternal exercise protects the offspring’s 
oxidative capacity by rescuing their mitochondria phenotype and 
fiber type distribution. The authors determined maternal exercise 
was responsible for demethylating the Ppargc1a promoter and in-
creasing PGC-1α expression, in contrast to the repression evident 
with a maternal sedentary lifestyle and high-fat gestational diet 
[87]. Taken together, maternal exercise improves the substrate 
handling of the offspring skeletal muscle and offers protection from 
certain disruptions associated with maternal obesity and Western-
style gestational diets. However, Quiclet et. al found that maternal 
exercise did not rescue the glucose tolerance in rat offspring fed a 
high fat/high sucrose diet. In situ mitochondrial respiration assays 
revealed maternal exercise improved substrate affinity (Km) for pal-
mitoyl-CoA and pyruvate in sedentary, chow-fed offspring, but not 
in mice fed a high-fat/high-sucrose diet [83]. Therefore, it is still 
unclear if maternal exercise can protect the offspring skeletal mus-
cle from postnatal dietary insults. Moreover, no investigations have 
been done to determine if these results can be translated to hu-
mans.

In coordination with the skeletal muscle, liver metabolism and 
pancreatic β-cell function plays an obligatory role in regulating 
whole body metabolic health and therefore has been investigated 
in the context of maternal exercise. Stanford et al. recently deter-
mined maternal exercise improved glucose tolerance in mice born 
to mothers fed a standard chow or high-fat diet [120]. Interesting-
ly, their ex vivo experiments revealed no effect of maternal exercise 
on the skeletal muscle, but instead a robust remodeling of the he-
patic insulin sensitivity and glucose production phenotype. Al-
though the mechanisms have yet to be elucidated, studies from 
the same group show evidence of hepatic mitochondrial biogen-
esis in the offspring born to mothers who exercised. Although at-
tention has been centered on determining the effect of maternal 
obesity and gestational diabetes on offspring β-cell function [128–
131], Zheng et al. was the first to show that the combination of pre-
gestational paternal exercise and pre-and during-gestational exer-
cise preserved β-cell mass, size, and islet morphology in offspring 
born to parents fed a high-fat diet [132].

To summarize, maternal exercise has been shown to improve 
cardiovascular function, skeletal muscle oxidative capacity, and 
whole-body substrate metabolism partly as a result of tissue-spe-
cific improvements in skeletal muscle, liver, and pancreatic pheno-
types. It is believed that epigenetic modifications underpin these 
improvements, specifically in genes that affect mitochondrial out-
comes of these tissues. Unfortunately, most of these findings are 
derived from animal studies and thus, it is still unclear if these re-
sults can be translated to humans. These specific types of studies 

are wrought with challenges in human cohorts due to the invasive-
ness of tissue sampling procedures. Often, human studies are lim-
ited to the presence/absence of metabolites or hormones in cord 
blood and tissue. Thus, there is a need to identify new avenues for 
future studies that explore the transmission and signaling behind 
maternal and fetal health and disease in the context of human tis-
sues and metabolism.

Recommendations for Future Studies

Intrauterine microenvironment
Previously, exercise has been shown to induce robust changes in 
circulating factors that affect the tissue’s microenvironment. To 
date, the most studied exercise “factors” are the cytokines released 
from skeletal muscle, termed myokines. There are presently 600 
skeletal muscle myokine species that have been identified [133], 
and targeted approaches aim to understand the effects of myokines 
in remodeling skeletal muscle metabolism. For example, interleu-
kin 6, brain-derived neurotrophic factor, and interleukin 15 have 
been shown to 1) be secreted from skeletal muscle [134–136], 2) 
increase in circulation following exercise [134, 135, 137–139], and 
3) independently improve mitochondrial density and/or function 
[140–142]. Importantly, these myokines help mediate the skeletal 
muscle-to-organ crosstalk and therefore may play a role in fetal 
programming resulting from maternal exercise, depending on their 
permeability through the placental-blood barrier. Recently, the 
novel myokine and adipokine known as apelin has been shown to 
mediate several of the skeletal muscle phenotype changes that 
occur in mice offspring born to mothers who exercised during preg-
nancy [87]. In this study, maternal exercise increased levels of ape-
lin, which subsequently increases mitochondrial biogenesis and 
oxidative capacity in the offspring. Like apelin, other undiscovered 
myokines and/or adipokines, which are now termed “exerkines” in 
the field when they are secreted in response to exercise, may be 
signaling from mother to infant and lend support to the notion of 
maternal exercise improving offspring metabolic health.

Maternal donation of mtDNA
Mitochondria are originally descendent from endosymbiotic bac-
terium and this derivation from symbiotic ancestors allows the 
maintenance of their own genome (mtDNA) [143, 144]. mtDNA 
consists of a DNA ring of approximately 16570 nucleotides and con-
tains 37 genes [145] but is responsible for transcription of 13 es-
sential electron transport chain (ETC) proteins, 2 rRNAs, and 22 
tRNAs [143]. The remainder of the nearly 1200 proteins that make 
up mitochondria require nuclear transcription and subsequent im-
port into appropriate mitochondrial compartments resulting in a 
finely tuned coordination between mtDNA and nuclear DNA.

Unlike the nuclear genome, mtDNA is inherited strictly through 
a maternal inheritance pattern in eukaryotes where only the oo-
cyte contributes mtDNA to the offspring [141]. Several mecha-
nisms are recognized for the elimination of paternal mtDNA from 
the embryo and include a genetic bottleneck, autophagy post-fer-
tilization, ubiquitin-protease pathways, and altered paternal mito-
chondrial transcription factor A (TFAM) expression [146]. In addi-
tion, while exclusive maternal donation of mitochondria and 
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mtDNA is generally acknowledged, a few, exceptional cases of bi-
parental inheritance of mtDNA in humans exist [147]. This lack of 
recombination of mtDNA and its unique inheritance pattern thus 
allows for an accumulation of transmitted mutations which can 
lead to severe diseases in the offspring.

When maternal obesity was studied across three generations of 
mice, its effects could be tracked across all three generations along-
side mitochondrial changes in morphology, bioenergetics, and dy-
namics [116]. The first generation of female offspring (F1) showed 
peripheral insulin resistance, increased intramuscular lipid content, 
mitochondrial dysfunction, and impaired mitochondrial dynamics 
in skeletal muscle. Oocyte mitochondria from the F1 mice also 
showed deranged morphology, reduced mtDNA copy number, and 
impaired mitochondrial dynamics. These were also apparent in the 
subsequent two generations. This propagation of mitochondrial 
impairments across generations is not restricted to skeletal mus-
cle. A follow-up study by this group showed that maternal obesity 
in mice results in transgenerational cardiac mitochondrial deficien-
cies as well [148]. Elegant in vitro fertilization studies from another 
group have shown that the oocyte at the time of fertilization is sus-
ceptible to the intrauterine environment [149]. Whether or not this 
is generating changes in mtDNA or some nuclear aspect remains 
to be discovered and is the central crux to understanding the in-
heritability of the mitochondrial phenotype. Nonetheless, the ini-
tial insult is presently thought to stem from changes in oocyte mi-
tochondria, particularly issues with mitophagy in the oocyte [150], 
that propagate to mitochondria that are present in all tissues/or-
gans. Finally, it is not certain in rodents or humans if exercise is pro-
tective in rescuing a deleterious mitochondrial phenotype that is 
seen in maternal obesity. With new evidence of transmission of mi-
tochondrial impairment and as mtDNA codes for critical bioener-
getic genes, any potent approaches of improving mitochondrial 
health could lead to substantial advancements of offspring health.

Umbilical cord-derived mesenchymal stem cells
Human trials examining the effects of maternal exercise on off-
spring have primarily measured body composition and epigenetic 
outcomes in placental biospecimens such as umbilical cord and 
cord blood. Although much has been gained from rodent models, 
several discrepancies exist including a gestational period that is 
significantly shorter than humans as well as differences in placen-
tal physiology including estrogen synthesis/release [151], miRNA 
profile [152], expression of cell surface markers for trophoblast in-
vasion [153], and accumulation of diet-specific metabolites [154]. 
Thus, it remains unclear if rodent findings can be translated to hu-
mans.

Non-invasive means to examine the effects of maternal exercise 
on offspring skeletal muscle metabolism need to be implemented 
in humans. Primary human skeletal muscle cells (SKMcs) have been 
used to investigate cell-autonomous mechanisms that underly the 
effects of lifestyle interventions including exercise [155], as well as 
the pathophysiology of diseases including diabetes [156], obesity 
[157, 158], and peripheral arterial disease [148]. For example, 
SKMcs derived from exercise-trained subjects retain the hallmark 
adaptations seen in vivo including, elevations in lipid handling ca-
pacity [159, 160], oxidative capacity [155], and insulin sensitivity 
[161]. Thus, it is believed the phenotype expressed in vitro is the 

result of lasting metabolic programming which occurs in vivo. 
Therefore, it is plausible to suggest that the metabolic program-
ming in SKMcs results from extrinsic changes in the tissue micro-
environment, similar to what may be occurring in the intrauterine 
environment. Performing invasive measures such as muscle biop-
sies in young infants and children is impractical, making it difficult 
to understand the tissue-specific effects of maternal programming 
unique to exercise training. To test these hypotheses, researchers 
must identify a primary cell niche that can be noninvasively ob-
tained and exists beyond the placental-blood barrier.

Recently, blood and umbilical cord-derived mesenchymal stem 
cells (MSCs) have gained attention in regenerative medicine be-
cause of their ability to differentiate into several cell types includ-
ing chondrocytes, adipocytes, and skeletal myocytes [162]. Impor-
tantly, MSCs are of fetal origin and thus, a mesodermal stem cell 
lineage that contributes to the fetal development of several periph-
eral tissues and are the primary stem cell lineage responsible for 
fetal myogenesis as well as postnatal skeletal muscle growth and 
repair. Therefore, MSCs also offer the potential to gain insight into 
the metabolic phenotype of the developing skeletal muscle at birth 
and possibly how it will be maintained into adulthood. Recently, 
Boyle et al. indicated that MSCs from offspring born to obese moth-
ers have lower rates of fat oxidation and elevated rates of lipid dep-
osition [163]. These same MSCs were differentiated into an adipo-
genic phenotype and measured for the quantity of fat stored in 
these cells. Interestingly, this fat storage phenotype was shown to 
correlate positively with infant fat mass, which is direct support for 
translating this model to the phenotype of the infant. Interesting-
ly, when stratified by oxidation rates, offspring with low MSC oxi-
dation rates had higher adiposity and fasting plasma insulin levels 
in vivo, providing evidence that maternal obesity has lasting nega-
tive implications for the metabolic phenotype of the infant [164]. 
Although maternal physical activity has been shown to have a ben-
eficial effect on rodent offspring, it has yet to be determined wheth-
er this is evident in humans and elicited primarily by the intrauter-
ine environment. Thus, MSCs may bridge the gap for future inves-
tigations into this area and may be used as an in vitro model for 
myogenic outcomes but also for exploring the inheritance of the 
maternal mitochondrial phenotype.

Conclusion
The aim of the present review was to examine the current knowl-
edge in the field of exercise in pregnancy as it relates to the moth-
er and developing fetus and identify gaps in the literature (summa-
rized in ▶Fig. 1). Animal studies have outlined several mechanisms 
through which the metabolic health of offspring is improved 
through maternal exercise and have established inheritance of met-
abolic impairments that track across multiple generations. Through 
these studies, mitochondria seem to be key organelles in the pro-
gression of metabolic health across generations. Exerkines may be 
a new research area of understanding how maternal exercise may 
signal changes to the developing fetus. In addition, MSCs present 
themselves as a potential and relevant model to gain insight into 
this cellular and metabolic programming of offspring. With these 
models, exercise scientists may soon have the necessary tools to
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explore the advantageous mechanisms in humans that exercise 
elicits from mother to offspring. There is a dire need to translate 
these findings to human cohorts as exercise during pregnancy 
maybe be a viable nonpharmacological strategy for prevention of 
metabolic diseases at the earliest timepoint – while in the womb.
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