Synlett 2021; 32(14): 1453-1456
DOI: 10.1055/a-1524-4912
letter

NiCl2 as a Cheap and Efficient Precatalyst for the Coupling of Aryl Fluorosulfonate and Phosphite/Phosphine Oxide

Wenjie Yan
,
Hongbo Zhou
,
Haoyuan Li
,
Huimin Hu
,
Ying Yu
,
Shengmei Guo
,
Hu Cai
We thank the National Science Foundation of China (21861024, 21861026, and 21761021) for financial support.


Abstract

Herein, NiCl2 is employed as a cheap precatalyst in the formation of C(sp2)–P bond via cross-coupling reaction of phenol derivatives and phosphine oxides/phosphites. This catalytic system allows a variety of phenols with diverse functional groups to transform into phosphates with good yields. No additional additive is used in this reaction.

Supporting Information

Primary Data



Publication History

Received: 22 May 2021

Accepted after revision: 08 June 2021

Accepted Manuscript online:
08 June 2021

Article published online:
09 July 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Note

    • 1a Hirao T, Masunaga T, Ohshiro Y, Agawa T. Tetrahedron Lett. 1980; 21: 3595
    • 1b Hirao T, Masunaga T, Ohshiro Y, Agawa T. Synthesis 1981; 56
    • 1c Schwan AL. Chem. Soc. Rev. 2004; 33: 218
    • 1d Montchamp JL, Dumond YR. J. Am. Chem. Soc. 2001; 123: 510
    • 1e Yang J, Chen TQ, Han LB. J. Am. Chem. Soc. 2015; 137: 1782
    • 1f Berger O, Petit C, Deal E, Montchamp JL. Adv. Synth. Catal. 2013; 355: 1361
    • 3a Petrakis KS, Nagabhushan TL. J. Am. Chem. Soc. 1987; 109: 2831
    • 3b Lu X, Zhu J. Synthesis 1987; 726
    • 4a Luo Y, Wu J. Organometallics 2009; 28: 6823
    • 4b Kwong FY, Lai CW, Yu M, Tian Y, Chan KS. Tetrahedron 2003; 59: 10295
    • 4c Fu WC, So CM, Kwong FY. Org. Lett. 2015; 17: 5906
    • 4d Ohta H, Xue Q, Hayashi M. Eur. J. Org. Chem. 2018; 735
    • 4e Montchamp J.-L, Dumond YR. J. Am. Chem. Soc. 2001; 123: 510
    • 4f Deal EL, Petit C, Montchamp J.-L. Org. Lett. 2011; 13: 3270
    • 4g Kalek M, Ziadi A, Stawinkski J. Org. Lett. 2008; 10: 4637
    • 5a Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
    • 5b Xuan J, Zeng T.-T, Chen J.-R, Lu L.-Q, Xiao W.-J. Chem. Eur. J. 2015; 21: 4962
  • 6 Yang G, Shen C, Zhang L, Zhang W. Tetrahedron Lett. 2011; 52: 5032
  • 7 Zhao Y, Wu G.-J, Han F.-S. Chem. Commun. 2012; 48: 5868
    • 8a Yang J, Xiao J, Chen T, Han L.-B. J. Organomet. Chem. 2016; 820: 120
    • 8b Yang J, Xiao J, Chen T, Han L.-B. J. Org. Chem. 2016; 81: 3911
  • 9 Liao L.-L, Gui Y.-Y, Zhang X.-B, Shen G, Liu H.-D, Zhou W.-J, Li J, Yu D.-G. Org. Lett. 2017; 19: 3735
  • 10 Zhang G, Wang J, Guan C, Zhao Y, Ding C. Eur. J. Org. Chem. 2021; 810
    • 11a Hanley PS, Clark TP, Karsovshiy AL, Ober MS, O’Brien JP, Staton TS. ACS Catal. 2016; 6: 3515
    • 11b Gan Y, Wang G, Xie X, Liu Y. J. Org. Chem. 2018; 83: 14036
    • 11c Ma C, Zhao CQ, Xu XT, Li ZM, Wang XY, Zhang K, Mei TS. Org. Lett. 2019; 21: 2464
    • 11d Dong JJ, Krasnova L, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2014; 53: 9430
    • 12a Wang Y, Yang Y, Jie K, Huang L, Guo S, Cai H. ChemCatChem 2018; 10: 716
    • 12b Guo S, Jie K, Zhang Z, Fu Z, Cai H. Eur. J. Org. Chem. 2019; 1808
    • 12c Guo S, Jie K, Huang L, Zhang Z, Wang Y, Fu Z, Cai H. Synlett 2019; 30: 1090
    • 12d Wang Y, Yang Y, Huang L, Jie K, Guo S, Cai H. Chin. J. Org. Chem. 2017; 37: 3220
    • 12e Guo S, Li S, Yan W, Liang Z, Fu Z, Cai H. Green Chem. 2020; 22: 7343
    • 12f Guo S, Li S, Yan W, Zhang Z, Cai H. Tetrahedron Lett. 2020; 61: 151566
    • 12g Huang Z, Liu W, Li S, Yang Y, Guo S, Cai H. Synlett 2020; 31: 1295
  • 13 Li Y, Lu L.-Q, Das S, Pisiewicz S, Junge K, Beller M. J. Am. Chem. Soc. 2012; 134: 18325