Synthesis 2021; 53(20): 3673-3682
DOI: 10.1055/a-1529-7678
short review

Five-Membered Hetarene N-Oxides: Recent Advances in Synthesis and Reactivity

a   N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russian Federation
b   National Research University Higher School of Economics, Myasnitskaya str. 20, 101000 Moscow, Russian Federation
,
Fedor E. Teslenko
a   N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 47, 119991 Moscow, Russian Federation
› Author Affiliations
This research was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement with the N.D. Zelinsky Institute of Organic Chemistry, RAS no. 075-15-2020-803).


Abstract

Five-membered heterocyclic N-oxides attract special attention due to their significant potential applications in medicinal chemistry and advanced materials science. In this regard, novel methods for their synthesis and functionalization are in constant demand. In this short review, recent state-of-the-art achievements in the chemistry of isoxazoline N-oxides, 1,2,3-triazole 1-oxides and 1,2,5-oxadiazole 2-oxides are summarized. The main routes involving transition-metal-catalyzed and metal-free functionalization protocols along with mechanistic considerations are outlined. The transformations of these hetarene N-oxide rings as precursors to other nitrogen heterocyclic systems are also presented.

1 Introduction

2 Isoxazoline N-Oxides

3 1,2,3-Triazole 1-Oxides

4 1,2,5-Oxadiazole 2-Oxides

5 Conclusion



Publication History

Received: 08 May 2021

Accepted after revision: 16 June 2021

Accepted Manuscript online:
16 June 2021

Article published online:
05 August 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Smith JM, Dixon JA, deGruyter JN, Baran PS. J. Med. Chem. 2019; 62: 2256
    • 1b Krska SW, DiRocco DA, Dreher SD, Shevlin M. Acc. Chem. Res. 2017; 50: 2976
    • 1c Hilton MC, Zhang X, Boyle BT, Alegre-Requena JV, Paton RS, McNally A. Science 2018; 362: 799
    • 1d Das P, Delost MD, Qureshi MH, Smith DT, Njardarson JT. J. Med. Chem. 2019; 62: 4265
    • 3a Bunz UH. F, Freudenberg J. Acc. Chem. Res. 2019; 52: 1575
    • 3b McConnell CR, Liu S.-Y. Chem. Soc. Rev. 2019; 48: 3436
    • 3c Fershtat LL, Makhova NN. ChemPlusChem 2020; 85: 13
    • 3d Makhova NN, Belen’kii LI, Gazieva GA, Dalinger IL, Konstantinova LS, Kuznetsov VV, Kravchenko AN, Krayushkin MM, Rakitin OA, Starosotnikov AM, Fershtat LL, Shevelev SA, Shirinian VZ, Yarovenko VN. Russ. Chem. Rev. 2020; 89: 55
    • 4a Belen’kii LI, Gazieva GA, Evdokimenkova YuB, Soboleva NO. Adv. Heterocycl. Chem. 2020; 132: 385
    • 4b Kutasevich AV, Perevalov VP, Mityanov VS. Eur. J. Org. Chem. 2021; 357
    • 4c Begtrup M. Adv. Heterocycl. Chem. 2012; 106: 1
    • 5a Sowmiah S, Esperanca JM. S. S, Rebelo LP. N, Afonso CA. M. Org. Chem. Front. 2018; 5: 453
    • 5b Bull JA, Mousseau JJ, Pelletier G, Charette AB. Chem. Rev. 2012; 112: 2642
    • 6a Yan G, Borah AJ, Yang M. Adv. Synth. Catal. 2014; 356: 2375
    • 6b Stephens DE, Larionov OV. Top. Heterocycl. Chem. 2017; 53: 59
    • 7a Malykhin RS, Sukhorukov AYu. Adv. Synth. Catal. 2021; 363: 3170
    • 7b Baykov SV, Boyarskiy VP. Chem. Heterocycl. Compd. 2020; 56: 814
    • 8a Barbachyn MR, Cleek GJ, Dolak LA, Garmon SA, Morris J, Seest EP, Thomas RC, Toops DS, Watt W, Wishka DG, Ford CW, Zurenko GE, Hamel JC, Schaadt RD, Stapert D, Yagi BH, Adams WJ, Friis JM, Slatter JG, Sams JP, Oien NL, Zaya MJ, Wienkers LC, Wynalda MA. J. Med. Chem. 2003; 46: 284
    • 8b Simoni D, Grisolia G, Giannini G, Roberti M, Rondanin R, Piccagli L, Baruchello R, Rossi M, Romagnoli R, Invidiata FP, Grimaudo S, Jung MK, Hamel E, Gebbia N, Crosta L, Abbadessa V, Di Cristina A, Dusonchet L, Meli M, Tolomeo M. J. Med. Chem. 2005; 48: 723

      For selected reviews, see:
    • 9a Ioffe SL. In Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis: Novel Strategies in Synthesis. Feuer H. John Wiley & Sons; Hoboken: 2008: 435-747
    • 9b Denmark SE, Cottell JJ. In The Chemistry of Heterocyclic Compounds: Synthetic Applications of 1,3-Dipolar Cyclo­addition Chemistry Toward Heterocycles and Natural Products. Padwa A, Pearson WH. John Wiley & Sons; Hoboken: 2003: 83-168
  • 10 Rouf A, Sahin E, Tanyeli C. Tetrahedron 2017; 73: 331
  • 11 Maksimenko AS, Kislyi VP, Chernysheva NB, Strelenko YuA, Zubavichus YV, Khrustalev VN, Semenova MN, Semenov VV. Eur. J. Org. Chem. 2019; 4260
  • 12 Liu Y, Li H, Zhou X, He Z. J. Org. Chem. 2017; 82: 10997
  • 13 Zhou R, Duan C, Yang C, He Z. Chem. Asian J. 2014; 9: 1183
  • 14 Tabolin AA, Sukhorukov AYu, Ioffe SL, Dilman AD. Synthesis 2017; 49: 3255
  • 15 Luo J, Chen R, Fan X, Gong J, Han J, He Z. Org. Biomol. Chem. 2019; 17: 6989
  • 16 Sahoo SC, Pan SC. Eur. J. Org. Chem. 2019; 1385
  • 17 Sperga A, Kazia A, Veliks J. Org. Biomol. Chem. 2021; 19: 2688
  • 18 Shen H.-J, Duan Y.-N, Zheng K, Zhang C. J. Org. Chem. 2019; 84: 14381
    • 19a Kunetsky RA, Dilman AD, Ioffe SL, Struchkova MI, Strelenko YA, Tartakovsky VA. Org. Lett. 2003; 5: 4907
    • 19b Kunetsky RA, Dilman AD, Struchkova MI, Belyakov PA, Tartakovsky VA, Ioffe SL. Synthesis 2006; 2265
  • 20 Iwasaki M, Ikemoto Y, Nishihara Y. Org. Lett. 2020; 22: 7577
  • 21 Zhao C, Shah BH, Khan I, Kan Y, Zhang YJ. Org. Lett. 2019; 21: 9045
  • 22 Zhmurov PA, Ushakov PYu, Novikov RA, Sukhorukov AYu, Ioffe SL. Synlett 2018; 29: 1871
  • 23 Raihan MJ, Rajawinslin RR, Kavala V, Kuo C.-W, Kuo T.-S, He C.-H, Huang H.-N, Yao C.-F. J. Org. Chem. 2013; 78: 8872
  • 24 Ichake SS, Rajawinslin RR, Kavala V, Villuri BK, Yang H.-T, Kuo C.-W, Yao C.-F. Asian J. Org. Chem. 2016; 5: 343
    • 25a Schönafinger K. Farmaco 1999; 54: 316
    • 25b Voronin AA, Zelenov VP, Churakov AM, Strelenko YuA, Fedyanin IV, Tartakovsky VA. Tetrahedron 2014; 70: 3018
    • 25c Zelenov VP, Voronin AA, Churakov AM, Strelenko YuA, Tartakovsky VA. Russ. Chem. Bull., Int. Ed. 2014; 63: 123
  • 26 Gornostaev LM, Dolgushina LV, Khalyavina YuG, Stashina GA, Firgang SI. Russ. Chem. Bull. 2011; 60: 157
  • 27 Pan J, Li X, Lin F, Liu J, Jiao N. Chem 2018; 4: 1427
  • 28 González-Mojica N, Almazán-Sánchez L, García-Torres JG, Santana-Martinez I, Martínez-Otero D, Sánchez-Carmona MA, Cuevas-Yañez E. Synth. Commun. 2019; 49: 679
  • 29 Gup R, Erer O, Dilek N. J. Mol. Struct. 2017; 1129: 142
  • 30 Gup R, Erer O, Dilek N. Bioorg. Chem. 2017; 71: 325
  • 31 Zhu J, Kong Y, Lin F, Wang B, Chen Z, Liu L. Eur. J. Org. Chem. 2015; 1507
  • 32 Liu W, Li Y, Xu B, Kuang C. Org. Lett. 2013; 15: 2342
  • 33 Liu W, Li Y, Wang Y, Kuang C. Org. Lett. 2013; 15: 4682
  • 34 Peng X, Huang P, Jiang L, Zhu J, Liu L. Tetrahedron Lett. 2016; 57: 5223
  • 35 Liu W, Yu Y, Fan B, Kuang C. Tetrahedron Lett. 2017; 58: 2969
  • 36 Liu W, Li Y, Wang Y, Kuang C. Eur. J. Org. Chem. 2013; 5272
  • 37 Zhu J, Chen Y, Lin F, Wang B, Huang Q, Liu L. Synlett 2015; 26: 1124
  • 38 Zhu B, Cui X, Pi C, Chen D, Wu Y. Adv. Synth. Catal. 2016; 358: 326
  • 39 Zhao J, Pi C, You C, Wang Y, Cui X, Wu Y. Eur. J. Org. Chem. 2018; 6919
  • 40 Zhu J, Chen Y, Lin F, Wang B, Chen Z, Liu L. Org. Biomol. Chem. 2015; 13: 3711
  • 41 Makhova NN, Fershtat LL. Tetrahedron Lett. 2018; 59: 2317
  • 42 Fershtat LL, Makhova NN. ChemMedChem 2017; 12: 622
    • 43a Matsubara R, Eguchi S, Ando A, Hayashi M. Org. Biomol. Chem. 2017; 15: 1965
    • 43b Matsubara R, Ando A, Hayashi M. Tetrahedron Lett. 2017; 58: 3337
    • 44a Fershtat LL, Epishina MA, Kulikov AS, Makhova NN. Mendeleev Commun. 2015; 25: 36
    • 44b Fershtat LL, Epishina MA, Kulikov AS, Struchkova MI, Makhova NN. Chem. Heterocycl. Compd. 2015; 51: 176
  • 45 Fershtat LL, Epishina MA, Ovchinnikov IV, Struchkova MI, Romanova AA, Ananyev IV, Makhova NN. Tetrahedron Lett. 2016; 57: 5685
  • 46 Ando A, Matsubara R, Takazawa S, Shimada T, Hayashi M. Asian J. Org. Chem. 2016; 5: 886
  • 47 Seymour CP, Tohda R, Tsubaki M, Hayashi M, Matsubara R. J. Org. Chem. 2017; 82: 9647
  • 48 Fershtat LL, Bystrov DM, Zhilin ES, Makhova NN. Synthesis 2019; 51: 747
  • 49 Zhilin ES, Fershtat LL, Bystrov DM, Kulikov AS, Dmitrienko AO, Ananyev IV, Makhova NN. Eur. J. Org. Chem. 2019; 4248
  • 50 Zhilin ES, Polkovnichenko MS, Ananyev IV, Fershtat LL, Makhova NN. ChemPhotoChem 2020; 4: 5346
  • 51 Zhilin ES, Bystrov DM, Ananyev IV, Fershtat LL, Makhova NN. Chem. Eur. J. 2019; 25: 14284
  • 52 Bystrov DM, Ananyev IV, Fershtat LL, Makhova NN. J. Org. Chem. 2020; 85: 15466
  • 53 Bystrov DM, Zhilin ES, Fershtat LL, Romanova AA, Ananyev IV, Makhova NN. Adv. Synth. Catal. 2018; 360: 3157
  • 54 Teslenko FE, Churakov AI, Larin AA, Ananyev IV, Fershtat LL, Makhova NN. Tetrahedron Lett. 2020; 61: 151678
    • 55a Matsubara R, Kim H, Sakaguchi T, Xie W, Zhao X, Nagoshi Y, Wang C, Tateiwa M, Ando A, Hayashi M, Yamanaka M, Tsuneda T. Org. Lett. 2020; 22: 1182
    • 55b Matsubara R, Ando A, Hasebe H, Kim H, Tsuneda T, Hayashi M. J. Org. Chem. 2020; 85: 5959
  • 56 Chaplygin DA, Ananyev IV, Fershtat LL, Makhova NN. Synthesis 2020; 52: 2667