Drug Res (Stuttg) 2021; 71(09): 520-527
DOI: 10.1055/a-1533-2941
Original Article

Exploring The Interactions of a Natural Gamma-Oryzanol with Human Serum Albumin: Surface Plasmon Resonance, Fluorescence, and Molecular Modeling Studies

Somaiyeh Maleki
1   Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
,
AmirAhmad Arabzadeh
2   Department of Surgery, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
,
Kazem Nejati
3   Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
,
Farzaneh Fathi
3   Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
4   Biosensor Sciences and Technologies Research Center (BSTRC), Ardabil University of Medical Sciences, Ardabil, Iran
› Author Affiliations
Funding Research reported in this publication was supported by Ardabil University of Medical Sciences under grant number [4932], Ardabil, Iran.

Abstract

γ-oryzanol (ORY) is the vital bioactive compound, which is a mixture of ferulic acid ester and plant sterols. In the present work, the binding of ORY to human serum albumin (HSA) was investigated at the molecular level using fluorescence spectroscopy and surface plasmon resonance (SPR) as well as molecular modeling studies. Based on the fluorescence data analysis, ORY can form a non-fluorescent complex with HSA and induce static quenching of the emission intensity of HSA. Also, the high value of K SV (34.69 × 104 M−1) confirmed a high sensitivity of HSA toward ORY. The real-time monitoring of the binding of ORY to HSA was carried out using the SPR technique. The small K D value (1.23 × 10−6 M) calculated by SPR analysis indicated a high affinity of ORY toward HSA. The molecular modeling studies confirmed that ORY has only one binding site on HSA and binds HSA in a cavity between subdomain IIA and IIIA.

Zoom Image



Publication History

Received: 20 April 2021
Received: 02 June 2021

Accepted: 21 June 2021

Article published online:
30 July 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Liang C-Y, Pan J, Bai A-M. et al Insights into the interaction of human serum albumin and carbon dots: Hydrothermal synthesis and biophysical study. International Journal of Biological Macromolecules 2020; 149: 1118-1129
  • 2 Lemus C, Angelis A, Halabalaki M. et al γ-Oryzanol: An attractive bioactive component from rice bran. In: Wheat and Rice in Disease Prevention and Health. Elsevier; 2014: 409–430
  • 3 Yi B, Lee J, Kim M-J. Increasing oxidative stability in corn oils through extraction of γ-oryzanol from heat treated rice bran. Journal of Cereal Science 2020; 91: 102880
  • 4 Zhang C, Liang W, Wang H. et al γ-Oryzanol mitigates oxidative stress and prevents mutant SOD1-Related neurotoxicity in Drosophila and cell models of amyotrophic lateral sclerosis. Neuropharmacology 2019; 160: 107777
  • 5 Kaneko R, Tsuchiya T. New compound in rice bran and germ oils. J Chem Soc Jpn 1954; 57: 526-529
  • 6 Okada T, Yamaguchi N. Antioxidative effect and pharmacology of oryzanol. Journal of Japan Oil Chemists’ Society 1983; 32: 305-310
  • 7 Cho Y-H, Lim S-Y, Rehman A. et al Characterization and quantification of γ-oryzanol in Korean rice landraces. Journal of Cereal Science 2019; 88: 150-156
  • 8 Minatel IO, Francisqueti FV, Corrêa CR. et al Antioxidant activity of γ-oryzanol: A complex network of interactions. International Journal of Molecular Sciences 2016; 17: 1107
  • 9 Shaghaghi M, Dehghan G, Rashtbari S. et al Multispectral and computational probing of the interactions between sitagliptin and serum albumin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2019; 117286
  • 10 Zhang Y, Li J-H, Ge Y-S. et al Biophysical studies on the interactions of a classic mitochondrial uncoupler with bovine serum albumin by spectroscopic, isothermal titration calorimetric and molecular modeling methods. Journal of Fluorescence 2011; 21: 475-485
  • 11 Maleki S, Dehghan G, Sadeghi L. et al Surface plasmon resonance, fluorescence, and molecular docking studies of bovine serum albumin interactions with natural coumarin diversin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2020; 230: 118063
  • 12 Qais FA, Husain FM, Khan RA. et al Deciphering the interaction of plumbagin with human serum albumin: A combined biophysical and molecular modelling study. Journal of King Saud University-Science 2020
  • 13 Yasmeen S, Qais FA. Unraveling the thermodynamics, binding mechanism and conformational changes of HSA with chromolyn sodium: Multispecroscopy, isothermal titration calorimetry and molecular docking studies. International Journal of Biological Macromolecules 2017; 105: 92-102
  • 14 Shanehbandi D, Majidi J, Kazemi T. et al Immuno-biosensor for Detection of CD20-Positive Cells Using Surface Plasmon Resonance. Adv Pharm Bull 2017; 7: 189-194 DOI: 10.15171/apb.2017.023.
  • 15 Fathi F, Rahbarghazi R, Movassaghpour AA. et al Detection of CD133-marked cancer stem cells by surface plasmon resonance: Its application in leukemia patients. Biochim Biophys Acta Gen Subj 2019; 1863: 1575-1582 DOI: 10.1016/j.bbagen.2019.06.009.
  • 16 Rezabakhsh A, Rahbarghazi R, Fathi F. Surface plasmon resonance biosensors for detection of Alzheimer’s biomarkers; An effective step in early and accurate diagnosis. Biosens Bioelectron 2020; 167: 112511 DOI: 10.1016/j.bios.2020.112511.
  • 17 Rashtbari S, Dehghan G, Yekta R. et al Effects of resveratrol on the structure and catalytic function of bovine liver catalase (BLC): Spectroscopic and theoretical studies. Advanced pharmaceutical bulletin 2017; 7: 349
  • 18 Yue Q, Shen T, Wang C. et al Study on the interaction of bovine serum albumin with ceftriaxone and the inhibition effect of zinc (II). International Journal of Spectroscopy 2012; 2012
  • 19 Hamishehkar H, Hosseini S, Naseri A. et al Interactions of cephalexin with bovine serum albumin: displacement reaction and molecular docking. BioImpacts: BI 2016; 6: 125
  • 20 Shaghaghi M, Dehghan G, Rashtbari S. et al Multispectral and computational probing of the interactions between sitagliptin and serum albumin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2019; 223: 117286
  • 21 Koohshekan B, Divsalar A, Saiedifar M. et al Protective effects of aspirin on the function of bovine liver catalase: A spectroscopy and molecular docking study. Journal of Molecular Liquids 2016; 218: 8-15
  • 22 Tajmir-Riahi H. An overview of protein-DNA and protein-RNA interactions. Journal of the Iranian Chemical Society 2006; 3: 297-304
  • 23 Zhang H, Deng H, Wang Y. Comprehensive investigations about the binding interaction of acesulfame with human serum albumin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2020; 118410
  • 24 Patel R, Wani FA, Mahfooz F. et al Interaction of human serum albumin with diclofenac incorporated in catanionic vesicles. Materials Today: Proceedings 2020; blocks
  • 25 Zhang Y-F, Zhou K-L, Lou Y-Y. et al Investigation of the binding interaction between estazolam and bovine serum albumin: multi-spectroscopic methods and molecular docking technique. Journal of Biomolecular Structure and Dynamics 2017; 35: 3605-3614
  • 26 Wang Q, Huang C-r, Jiang M. et al Binding interaction of atorvastatin with bovine serum albumin: Spectroscopic methods and molecular docking. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2016; 156: 155-163
  • 27 Lakowicz JR. Protein fluorescence. In: Principles of fluorescence spectroscopy. Springer; 1983: 341–381
  • 28 Wang B-L, Pan D-Q, Zhou K-L. et al Multi-spectroscopic approaches and molecular simulation research of the intermolecular interaction between the angiotensin-converting enzyme inhibitor (ACE inhibitor) benazepril and bovine serum albumin (BSA). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2019; 212: 15-24
  • 29 Singh I, Luxami V, Paul K. Spectroscopy and molecular docking approach for investigation on the binding of nocodazole to human serum albumin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2020; 118289
  • 30 Dohare N, Khan AB, Athar F. et al Urea-induced binding between diclofenac sodium and bovine serum albumin: a spectroscopic insight. Luminescence 2016; 31: 945-951
  • 31 Kou S-B, Lin Z-Y, Wang B-L. et al Evaluation of the binding behavior of olmutinib (HM61713) with model transport protein: Insights from spectroscopic and molecular docking studies. Journal of Molecular Structure 2021; 1224: 129024
  • 32 Wani TA, Bakheit AH, Abounassif M. et al Study of interactions of an anticancer drug neratinib with bovine serum albumin: spectroscopic and molecular docking approach. Frontiers in Chemistry 2018; 6: 47
  • 33 Sharifi M, Dolatabadi JEN, Fathi F. et al Surface plasmon resonance and molecular docking studies of bovine serum albumin interaction with neomycin: kinetic and thermodynamic analysis. BioImpacts: BI 2017; 7: 91
  • 34 Khalili L, Dehghan G. A comparative spectroscopic, surface plasmon resonance, atomic force microscopy and molecular docking studies on the interaction of plant derived conferone with serum albumins. Journal of Luminescence 2019; 211: 193-202