Synthesis 2022; 54(02): 246-254
DOI: 10.1055/a-1589-0150
short review

Recent Advances in Cross-Couplings of Functionalized Organozinc Reagents

Baosheng Wei
,
Paul Knochel
We thank the Deutsche Forschungsgemeinschaft (DFG) and the Cluster of Excellence e-conversion for financial support.


Dedicated to the memory of Victor Snieckus, a pioneer of organometallic chemistry and missing friend

Abstract

Cross-couplings involving organozinc reagents usually require a Pd-catalyst (Negishi cross-coupling), however, uncatalyzed cross-couplings of zinc organometallics proceed well in the absence of transition-metal catalysts with reactive electrophiles such as benzal 1,1-diacetates, benzhydryl acetates, and iminium trifluoroacetates. Organozinc compounds also undergo C–N bond formation with O-benzoylhydroxylamines or organic azides in the presence of cobalt- or iron-catalysts. Highly diastereoselective and enantioselective cross-couplings can be readily performed with room-temperature configurationally stable alkylzinc species, producing diastereoselectively and enantiomerically enriched products. Finally, highly regioselective magnesiations of functionalized arenes and heteroarenes undergo Negishi (after transmetalation with ZnCl2) or Cu-catalyzed cross-couplings.

1 Introduction

2 Uncatalyzed Cross-Couplings of Organozinc Reagents with Highly Electrophilic Partners

3 Iron- and Cobalt-Catalyzed Aminations using Organozinc Reagents

4 Stereo- and Regioselective Cross-Couplings of Organozinc Reagents

5 Conclusion



Publication History

Received: 29 July 2021

Accepted after revision: 16 August 2021

Accepted Manuscript online:
16 August 2021

Article published online:
12 October 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Handbook of Functionalized Organometallics: Applications in Synthesis, Vol. 2. Knochel P. Wiley-VCH; Weinheim: 2005: 690
    • 1b Dagousset G, Francois C, Leon T, Blanc R, Sansiaume-Dagousset E, Knochel P. Synthesis 2014; 3133
    • 1c Ziegler DS, Wei B, Knochel P. Chem. Eur. J. 2019; 25: 2695
    • 1d Lutter FH, Hofmayer MS, Hammann JM, Malakhov V, Knochel P. Org. React. 2019; 100: 63
    • 1e Balkenhohl M, Knochel P. Chem. Eur. J. 2020; 26: 3688
    • 2a Knochel P, Singer RD. Chem. Rev. 1993; 93: 2117
    • 2b Hendrick CE, Wang Q. J. Org. Chem. 2017; 82: 839
  • 3 Haas D, Hammann JM, Greiner R, Knochel P. ACS Catal. 2016; 6: 1540
  • 4 Lutter FH, Grassl S, Grokenberger L, Hofmayer MS, Chen Y.-H, Knochel P. ChemCatChem 2019; 11: 5188
  • 5 Skotnitzki J, Kremsmair A, Knochel P. Synthesis 2020; 52: 189
  • 6 Balkenhohl M, Knochel P. SynOpen 2018; 2: 78
  • 7 Wei B, Ren Q, Bein T, Knochel P. Angew. Chem. Int. Ed. 2021; 60: 10409
  • 8 Chapman RS. L, Tibbetts JD, Bull SD. Tetrahedron 2018; 74: 5330
    • 9a Esquivias J, Arrayas RG, Carretero JC. Angew. Chem. Int. Ed. 2006; 45: 629
    • 9b Liu C.-R, Li M.-B, Yang C.-F, Tian S.-K. Chem. Commun. 2008; 1249
    • 9c Li Z, Duan Z, Kang J, Wang H, Yu L, Wu Y. Tetrahedron 2008; 64: 1924
    • 9d Sun F.-L, Zeng M, Gu Q, You S.-L. Chem. Eur. J. 2009; 15: 8709
    • 9e Ruengsangtongkul S, Taprasert P, Sirion U, Jaratjaroonphong J. Org. Biomol. Chem. 2016; 14: 8493
    • 10a Piller FM, Appukkuttan P, Gavryushin A, Helm M, Knochel P. Angew. Chem. Int. Ed. 2008; 47: 6802
    • 10b Piller FM, Metzger A, Schade MA, Haag BA, Gavryushin A, Knochel P. Chem. Eur. J. 2009; 15: 7192
    • 11a Millot N, Piazza C, Avolio S, Knochel P. Synthesis 2000; 941
    • 11b Gommermann N, Koradin C, Knochel P. Synthesis 2002; 2143
  • 12 Werner V, Ellwart M, Wagner AJ, Knochel P. Org. Lett. 2015; 17: 2026
  • 13 Ellwart M, Hoefner G, Gerwien A, Wanner KT, Knochel P. Synthesis 2017; 49: 5159
    • 14a Ahond A, Cave A, Kan-Fan C, Husson HP, De Rostolan J, Potier P. J. Am. Chem. Soc. 1968; 90: 5622
    • 14b Kinast G, Tietze LF. Angew. Chem., Int. Ed. Engl. 1976; 15: 239
  • 15 Paul F, Patt J, Hartwig JF. J. Am. Chem. Soc. 1994; 116: 5969
  • 16 Berman AM, Johnson JS. J. Am. Chem. Soc. 2004; 126: 5680
    • 17a Chen Y.-H, Grassl S, Knochel P. Angew. Chem. Int. Ed. 2018; 57: 1108
    • 17b Grassl S, Knochel P. Org. Lett. 2020; 22: 1947
    • 18a O’Neil IA, Cleator E, Tapolczay DJ. Tetrahedron Lett. 2001; 42: 8247
    • 18b Ellis GL, O’Neil IA, Ramos VE, Kalindjian SB, Chorlton AP, Tapolczay DJ. Tetrahedron Lett. 2007; 48: 1687
  • 19 Grassl S, Chen Y.-H, Hamze C, Tuellmann CP, Knochel P. Org. Lett. 2019; 21: 494
  • 20 Krasovskiy A, Kopp F, Knochel P. Angew. Chem. Int. Ed. 2006; 45: 497
  • 21 Grassl S, Singer J, Knochel P. Angew. Chem. Int. Ed. 2020; 59: 335
  • 22 Mosrin M, Knochel P. Org. Lett. 2009; 11: 1837
  • 23 Li J, Tan E, Keller N, Chen Y.-H, Zehetmaier PM, Jakowetz A.-C, Bein T, Knochel P. J. Am. Chem. Soc. 2019; 141: 98
  • 24 Skotnitzki J, Kremsmair A, Keefer D, Gong Y, de Vivie-Riedle R, Knochel P. Angew. Chem. Int. Ed. 2020; 59: 320
  • 25 Calimsiz S, Organ MG. Chem. Commun. 2011; 47: 5181
    • 26a Whisler MC, MacNeil S, Snieckus V, Beak P. Angew. Chem. Int. Ed. 2004; 43: 2206
    • 26b Haag B, Mosrin M, Hiriyakkanavar I, Malakhov V, Knochel P. Angew. Chem. Int. Ed. 2011; 50: 9794
  • 27 Clososki GC, Rohbogner CJ, Knochel P. Angew. Chem. Int. Ed. 2007; 46: 7681
  • 28 Balkenhohl M, Greiner R, Makarov IS, Heinz B, Karaghiosoff K, Zipse H, Knochel P. Chem. Eur. J. 2017; 23: 13046
  • 29 Krasovskiy A, Krasovskaya V, Knochel P. Angew. Chem. Int. Ed. 2006; 45: 2958
  • 30 Lutter FH, Grokenberger L, Perego LA, Broggini D, Lemaire S, Wagschal S, Knochel P. Nat. Commun. 2020; 11: 4443
  • 31 Hess A, Prohaska JP, Doerrich SB, Trauner F, Lutter FH, Lemaire S, Wagschal S, Karaghiosoff K, Knochel P. Chem. Sci. 2021; 12: 8424
  • 32 De Silva SO, Reed JN, Snieckus V. Tetrahedron Lett. 1978; 5099
  • 33 Knochel P, Yeh MC. P, Berk SC, Talbert J. J. Org. Chem. 1988; 53: 2390
    • 34a White JM, Tunoori AR, Georg GI. J. Am. Chem. Soc. 2000; 122: 11995
    • 34b Zhao Y, Snieckus V. Org. Lett. 2014; 16: 390
    • 35a King AO, Okukado N, Negishi E. J. Chem. Soc., Chem. Commun. 1977; 683
    • 35b Negishi E. Acc. Chem. Res. 1982; 15: 340
    • 35c Negishi E. Angew. Chem. Int. Ed. 2011; 50: 6738