Synlett 2021; 32(19): 1957-1962
DOI: 10.1055/a-1623-1490
letter

A Rh(II)- or Ag(I)-Catalyzed Formal C–O Bond Insertion of Cyclic Hemiaminal with Aryl Diazoacetate

Cong Xu
,
,
Xiongda Xie
,
Lin Deng
,
Xinfang Xu
,
Albert S. C. Chan
,
Wenhao Hu
Support for this research from the National Natural Science Foundation of China (21971262, 92056201), Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery (2019B030301005), and The Program for Guangdong Introducing Innovative and Entrepreneurial Teams (No. 2016ZT06Y337) is greatly acknowledged.


Abstract

A mild and facile synthetic method via convergent assembly of two reactive intermediates generated in situ has been developed. This method provides an efficient way to construct six- and seven-membered N-heterocycles containing a biaryl linkage. This reaction features a gem-difunctionalization process of diazo compounds with cyclic hemiaminals, delivering α-hydroxyl-β-amino ester derivatives with a tertiary carbon center through a formal C–O bond-insertion transformation.

Supporting Information



Publication History

Received: 10 August 2021

Accepted after revision: 30 August 2021

Accepted Manuscript online:
30 August 2021

Article published online:
14 September 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Kinston DG. I. Chem. Commun. 2001; 867
    • 1b Horwitz SB. J. Nat. Prod. 2004; 67: 136
    • 1c Birman VB, Jiang H, Li X, Guo L, Uffman EW. J. Am. Chem. Soc. 2006; 128: 6536
    • 1d Davies SG, Hughes DG, Nicholson RL, Smith AD, Wright AJ. Org. Biomol. Chem. 2004; 2: 1549
    • 1e Goodman GC, Do DT, Johnson JS. Org. Lett. 2013; 15: 2446
    • 1f Sugimoto T, Kawanishi N, Sagara Y, Machida T, Ichikawa K. JP2014214138, 2014
    • 1g Amari G, Armani E, Blackaby W, van de Poeol H, Baker-Glenn C, Trivedi N. PCT Int. Appl WO 2016177849, 2016
    • 2a Schiff PB, Fant J, Horwitz SB. Nature 1979; 277: 665
    • 2b Righi G, Rumboldt G, Bonini C. J. Org. Chem. 1996; 61: 3557
    • 2c Kanda Y, Nakamura H, Umemiya S, Puthukanoori R, Appala V, Gaddamanugu G, Paraselli B, Baran P. J. Am. Chem. Soc. 2020; 142: 10526
    • 2d Shao F, Wilson I, Qiu D. Curr. Pharm. Biotechnol. 2021; 22: 360
    • 3a Klar U, Graf H, Schenk O, Röhr B, Schulz H. Bioorg. Med. Chem. Lett. 1998; 8: 1397
    • 3b Henriques AC, Ribeiro D, Pedrosa J, Sarmento B, Silva PM. A, Bousbaa H. Cancer Lett. 2019; 440: 64
  • 4 Arai J, Goto K, Otoyama Y, Nakajima Y, Sugiura I, Kajiwara A, Tojo M, Ichikawa Y, Uozumi S, Shimozuma Y, Uchikoshi M, Sakaki M, Nozawa H, Nakagawa R, Muroyama R, Kato N, Yoshida H. Cancer Immunol. Immun. 2021; 70: 203
    • 5a Horig H, Pullman W. J. Transl. Med. 2004; 2: 44
    • 5b Elgerta C, Rühlea A, Sandnerb P, Behrendsa S. Biochem. Pharmacol. 2019; 163: 142
    • 6a Torssell S, Kienle M, Somfai P. Angew. Chem. Int. Ed. 2005; 44: 3096
    • 6b Torssell S, Somfai P. Adv. Synth. Catal. 2006; 348: 2421
    • 6c Jiang Y, Chen X, Zheng Y, Xue Z, Shu C, Yuan W, Zhang X. Angew. Chem. Int. Ed. 2011; 50: 7304
    • 6d Qian Y, Jing C, Shi T, Ji J, Tang M, Zhou J, Zhai C, Hu W. ChemCatChem 2011; 3: 653
    • 6e Wang Q, Huang W, Yuan H, Cai Q, Chen L, Lv H, Zhang X. J. Am. Chem. Soc. 2014; 136: 16120
    • 6f Jiang J, Yao M, Lu C. Org. Lett. 2014; 16: 318
    • 6g Qin S, Liu T, Luo Y, Yan J, Kang H, Jiang S, Yang G. Synlett 2019; 30: 593
    • 6h Volodymyr S, Serhii M, Sylvain B, Iryna D, Pascal R, Mykhailo V, Isabelle G. Org. Lett. 2019; 21: 2340
    • 8a Alcaide A, Llebaria A. J. Org. Chem. 2014; 79: 2993
    • 8b Cao J, Hyster TK. ACS Catal. 2020; 10: 6171
    • 9a Sugimoto H, Mikami A, Kai K, Sajith PK, Shiota Y, Yoshizawa K, Asano K, Suzuki T, Itoh S. Inorg. Chem. 2015; 54: 7073
    • 9b Williamson KS, Yoon TP. J. Am. Chem. Soc. 2010; 132: 4570
    • 10a Skucas E, Zbieg JR, Krische MJ. J. Am. Chem. Soc. 2009; 131: 5054
    • 10b Gargaro SL, Klake RK, Burns KL, Elele SO, Gentry SL, Sieber JD. Org. Lett. 2019; 21: 9753
    • 11a Zhang D, Hu W. Chem. Rec. 2017; 17: 739
    • 11b Guo X, Hu W. Acc. Chem. Res. 2013; 46: 2427
    • 11c Tang M, Xing D, Cai M, Hu W. Chin. J. Org. Chem. 2014; 34: 1268

      For selected examples, see
    • 12a Zhang D, Wang X, Zhang M, Kang Z, Xiao G, Xu X, Hu W. CCS Chem. 2020; 2: 432
    • 12b Wei H, Bao M, Dong K, Qiu L, Wu B, Hu W, Xu X. Angew. Chem. Int. Ed. 2018; 57: 17200
    • 12c Che J, Niu L, Jia S, Xing D, Hu W. Nat. Commun. 2020; 11: 1511
    • 12d Lv X, Liu S, Zhou S, Dong G, Xing D, Xu X, Hu W. CCS Chem. 2020; 2: 1903

      For selected examples, see
    • 13a Ren L, Lian X, Gong L. Chem. Eur. J. 2013; 19: 3315
    • 13b Nicolle S, Lewis W, Hayes CJ, Moody CJ. Angew. Chem. Int. Ed. 2015; 54: 8485
    • 13c Zhou C, Wang J, Wei J, Xu Z, Guo Z, Low K, Che C. Angew. Chem. Int. Ed. 2012; 51: 11376
    • 13d Yuan W, Eriksson L, Szabó KJ. Angew. Chem. Int. Ed. 2016; 55: 8410
    • 13e Liang X, Li R, Wang X. Angew. Chem. Int. Ed. 2019; 58: 13885

      For selected examples, see
    • 14a Hu W, Xu X, Zhou J, Liu W, Huang H, Hu J, Yang L, Gong L. J. Am. Chem. Soc. 2008; 130: 7782
    • 14b Xiao G, Ma C, Xing D, Hu W. Org. Lett. 2016; 18: 6086
    • 14c Guan X, Tang M, Liu Z, Hu W. Chem. Commun. 2019; 55: 9809
    • 14d Zhang D, Wang X, Zhang M, Kang Z, Xiao G, Xu X, Hu W. CCS Chem. 2020; 2: 432
    • 14e Hong K, Dong S, Xu X, Zhang Z, Shi T, Yuan H, Xu X, Hu W. ACS Catal. 2021; 11: 6750

      For selected examples, see
    • 15a Zhai C, Xing D, Qian Y, Ji J, Ma C, Hu W. Synlett 2014; 25: 1745
    • 15b Liu X, Xiao G, Xu X, Kang Z, Zhang D, Hu W. Adv. Synth. Catal. 2020; 362: 1961

      For selected examples, see
    • 16a Huang H, Guo X, Hu W. Angew. Chem. Int. Ed. 2007; 46: 1337
    • 16b Zhang M, Lu T, Zhao Y, Xie G, Miao Z. RSC Adv. 2019; 9: 11978

      For selected examples, see
    • 17a Hari DP, Waser J. J. Am. Chem. Soc. 2016; 138: 2190
    • 17b Chen G, Song J, Yu Y, Luo X, Li C, Huang X. Chem. Sci. 2016; 7: 1786
    • 17c Huang Y, Li X, Wang X, Yu Y, Zheng J, Wu W, Jiang H. Chem. Sci. 2017; 8: 7047
    • 17d Hari DP, Waser J. J. Am. Chem. Soc. 2017; 139: 8420
    • 17e Yuan H, Nuligonda T, Gao H, Tung C, Xu Z. Org. Chem. Front. 2018; 5: 1371
    • 18a Kang Z, Wang Y, Zhang D, Wu R, Xu X, Hu W. J. Am. Chem. Soc. 2019; 141: 1473
    • 18b Yu J, Chen L, Sun J. Org. Lett. 2019; 21: 1664
    • 18c Meng X, Yang B, Zhang L, Pan G, Zhang X, Shao Z. Org. Lett. 2019; 21: 1292
    • 18d Qin G, Li L, Li J, Huang H. J. Am. Chem. Soc. 2015; 137: 12490
    • 18e Zhu C, Xu G, Sun J. Angew. Chem. Int. Ed. 2016; 55: 11867
    • 18f Liu P, Xu G, Sun J. Org. Lett. 2017; 19: 1858
    • 18g Wang W, Huang H. Chem. Commun. 2019; 55: 3947
  • 19 Alamsetti SK, Spanka M, Schneider C. Angew. Chem. Int. Ed. 2016; 55: 2392
  • 20 CCDC 2087775 (3f-1), 2087774 (3f-2), and 2087776 (5a-2) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 21 General Procedure for the Ag(I)-Catalyzed Formal C–O Insertion Reaction To a solution of AgOTf (25.6 mg, 10 mol%) and hemiaminal 1 (1.0 mmol) in dichloromethane (7.5 mL) was added a solution of aryldiazoacetate 2 (1.5 mmol) in dichloromethane (5.0 mL) over 15 min via a syringe pump at room temperature under argon atmosphere. The reaction was continued for an additional 2 h under these conditions. Upon completion of the reaction (monitored by TLC), the solvent was removed, and the crude product was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 30:1 to 10:1) to give 3 in high to excellent yields as a colorless oil. 3a-1: Yield: 120 mg (52%); colorless oil. 1H NMR (400 MHz, CDCl3): δ = 7.42–7.34 (m, 3 H), 7.25–7.18 (m, 6 H), 7.10–7.06 (m, 1 H), 7.02–6.99 (m, 3 H), 6.10 (s, 1 H), 4.95 (d, J = 13.6 Hz, 1 H), 3.85 (d,J = 13.6 Hz, 1 H), 3.75 (s, 3 H), 3.25 (brs, 1 H), 1.53 (s, 9 H). 13C NMR (100 MHz, CDCl3): δ = 174.9, 155.6, 142.5, 140.3, 138.7, 135.1, 134.0, 133.4, 129.4, 129.3, 128.8, 128.7, 128.5, 127.8, 127.2, 127.1, 127.0, 127.0, 81.1, 80.6, 69.3, 53.4, 49.2, 28.6. HRMS (ESI): m/z [M + H]+ calcd for C28H30NO5 +: 460.2118; found: 460.2121. 3a-2: Yield: 94 mg (40%); colorless oil. 1H NMR (400 MHz, CDCl3): δ = 7.56 (d,J= 7.5 Hz, 1 H), 7.52 (d, J = 8.0 Hz, 3 H), 7.47–7.43 (m, 2 H), 7.37–7.34 (m, 3 H), 7.26–7.20 (m, 4 H), 6.16 (s, 1 H), 4.85 (s, 1 H), 3.87 (d,J= 14.0 Hz, 1 H), 3.50 (s, 3 H), 1.19 (s, 9 H). 13C NMR (100 MHz, CDCl3): δ = 173.5, 155.3, 141.9, 140.2, 138.8, 135.5, 135.2, 132.2, 129.8, 129.7, 128.8, 128.5, 128.4, 128.2, 127.8, 127.5, 127.5, 126.6, 82.4, 80.5, 68.3, 52.9, 49.3, 28.1. HRMS (ESI): m/z [M + H]+ calcd for C28H30NO5 +: 460.2118; found: 460.2126. General Procedure for Rh(II)-Catalyzed Formal C–O Insertion Reaction To a solution of Rh2(OAc)4 (8.8 mg, 2 mol%) and hemiaminal 4 (1.0 mmol) in 1,2-dichloroethane (7.5 mL) was added a solution of aryldiazoacetate 2 (1.5 mmol) in dichloromethane (5.0 mL) over 20 min via a syringe pump at room temperature under argon atmosphere. The reaction was continued for an additional 2 h under these conditions. After the reaction completed (monitored by TLC), the solvent was removed, and the crude product was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 25:1 to 5:1) to give 5 in high to excellent yields as colorless oil. 5a-1: Yield: 195 mg (43%); colorless oil. 1H NMR (400 MHz, CDCl3): δ = 7.77–7.71 (m, 4 H), 7.42 (s, 1 H), 7.32–7.18 (m, 6 H), 6.91 (t, J = 7.4 Hz, 1 H), 6.39 (d, J = 7.6 Hz, 1 H), 6.34 (s, 1 H), 3.84 (s, 3 H), 3.19 (s, 1 H), 1.47 (s, 9 H); 13C NMR (100 MHz, CDCl3): δ = 174.1, 153.0, 137.9, 135.8, 132.8, 131.9, 129.5, 128.2, 128.1, 128.0, 127.3, 127.2, 126.7, 126.6, 125.0, 123.3, 123.0, 83.2, 81.7, 61.8, 53.5, 28.2. HRMS (ESI): m/z [M + Na]+ calcd for C27H27NNaO5 +: 468.1781; found: 468.1781. 5a-2: Yield: 201 mg (46%); white solid. 1H NMR (400 MHz, CDCl3): δ = 7.84 (d, J = 8.0 Hz, 1 H), 7.75 (d,J = 7.6 Hz, 1 H), 7.68 (d,J = 6.8 Hz, 2 H), 7.40 (t,J = 7.4 Hz, 1 H), 7.34–7.19 (m, 7 H), 6.96 (s, 1 H), 6.58 (s, 1 H), 3.81 (s, 3 H), 3.03 (s, 1 H), 1.26 (s, 9 H); 13C NMR (100 MHz, CDCl3): δ = 173.4, 152.7, 138.1, 136.1, 133.5, 132.7, 129.2, 128.6, 128.0, 127.6, 127.5, 127.0, 126.6, 126.5, 124.5, 123.4, 122.9, 83.8, 81.4, 77.3, 53.4, 28.0. HRMS (ESI): m/z [M + Na]+ calcd for C27H27NNaO5 +: 468.1781; found: 468.1781.