Synthesis 2022; 54(02): 355-368
DOI: 10.1055/a-1638-2478
feature

Kinetic Resolution by Lithiation: Highly Enantioselective Synthesis of Substituted Dihydrobenzoxazines and Tetrahydroquinoxalines

Ashraf El-Tunsi
a   Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
,
a   Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
,
Song-Hee Yeo
a   Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
,
Joshua D. Priest
a   Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
,
Anthony Choi
a   Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
,
Carolin M. Kobras
b   The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
,
Soneni Ndlovu
a   Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
,
Ilaria Proietti Silvestri
c   Liverpool ChiroChem, Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
,
Andrew K. Fenton
b   The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
,
Iain Coldham
a   Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
› Author Affiliations
This work was supported by the Engineering and Physical Sciences Research Council (EPSRC, grant EP/R024294/1), the University of Sheffield, the Ministry of Higher Education and Scientific Research Libya, the Royal Society (Short Industry Fellowship SIF\R2\202031), and the Medical Research Council (MRC, grant MR/S009280/1).


Abstract

Kinetic resolution provided a highly enantioselective method to access a range of 3-aryl-3,4-dihydro-2H-1,4-benzoxazines using n-butyllithium and the chiral ligand sparteine. The enantioenrichment remained high on removing the tert-butoxycarbonyl (Boc) protecting group. The intermediate organolithium undergoes ring opening to an enamine. The kinetic resolution was extended to give enantiomerically enriched substituted 1,2,3,4-tetrahydroquinoxalines and was applied to the synthesis of an analogue of the antibiotic levofloxacin that was screened for its activity against the human pathogen Streptococcus pneumoniae.

Supporting Information



Publication History

Received: 20 August 2021

Accepted: 06 September 2021

Accepted Manuscript online:
06 September 2021

Article published online:
26 October 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Anderson VR, Perry CM. Drugs 2008; 68: 535
  • 2 Higuchi RI, Thompson AW, Chen J.-H, Caferro TR, Cummings ML, Deckhut CP, Adams ME, Tegley CM, Edwards JP, López FJ, Kallel EA, Karanewsky DS, Schrader WT, Marschke KB, Zhi L. Bioorg. Med. Chem. Lett. 2007; 17: 5442
  • 3 Koini EN, Papazafiri P, Vassilopoulos A, Koufaki M, Horváth Z, Koncz I, Virág L, Papp GJ, Varró A, Calogeropoulou T. J. Med. Chem. 2009; 52: 2328
    • 4a Eary CT, Jones ZS, Groneberg RD, Burgess LE, Mareska DA, Drew MD, Blake JF, Laird ER, Balachari D, O’Sullivan M, Allen A, Marsh V. Bioorg. Med. Chem. Lett. 2007; 17: 2608
    • 4b Wang A, Prouty CP, Pelton PD, Yong M, Demarest KT, Murray WV, Kuo G.-H. Bioorg. Med. Chem. Lett. 2010; 20: 1432
    • 5a Smist M, Kwiecien H. Curr. Org. Synth. 2014; 11: 676
    • 5b Ilas J, Anderluh PS, Dolenc MS, Kikelj D. Tetrahedron 2005; 61: 7325
    • 5c Achari B, Mandal SB, Dutta PK, Chowdhury C. Synlett 2004; 2449
  • 6 Zumbrägel N, Machui P, Nonnhoff J, Gröger H. J. Org. Chem. 2019; 84: 1440
  • 7 Shen H.-C, Wu Y.-F, Zhang Y, Fan L.-F, Han Z.-Y, Gong L.-Z. Angew. Chem. Int. Ed. 2018; 57: 2372
    • 8a Korolyova MA, Vakarov SA, Kozhevnikov DN, Gruzdev DA, Levit GL, Krasnov VP. Eur. J. Org. Chem. 2018; 4577
    • 8b Vakarov SA, Korolyova MA, Gruzdev DA, Pervova MG, Levit GL, Krasnov VP. Russ. Chem. Bull. 2019; 68: 1257
    • 8c Vakarov SA, Gruzdev DA, Chulakov EN, Levit GL, Krasnov VP. Russ. Chem. Bull. 2019; 68: 841
  • 9 Saito K, Miyashita H, Akiyama T. Chem. Commun. 2015; 51: 16648
  • 10 Cochrane EJ, Leonori D, Hassall LA, Coldham I. Chem. Commun. 2014; 50: 9910
  • 11 Carter N, Li X, Reavey L, Meijer AJ. H. M, Coldham I. Chem. Sci. 2018; 9: 1352
  • 12 Choi A, El-Tunsi A, Wang Y, Meijer AJ. H. M, Li J, Li X, Proietti Silvestri I, Coldham I. Chem. Eur. J. 2021; 27: 11670
  • 13 For a review, see: Kasten K, Seling N, O’Brien P. Org. React. 2019; 100: 255
  • 14 Selectivity factor, S = krel = ln[(1 – C)(1 – ee)]/ln[(1 – C)(1 + ee)], where C = conversion and ee = enantiomeric excess; see: Kagan HB, Fiaud JC. Top. Stereochem. 1988; 18: 249
    • 15a Ten Brink RE, Merchant KM, McCarthy TJ. WO Patent 03/089438A1, 2003

    • For spectroscopic data for compound 1a, see:
    • 15b Jangili P, Kashanna J, Das B. Tetrahedron Lett. 2013; 54: 3453

      For related ring opening of lithiated intermediates, see:
    • 16a Babudri F, Florio S, Reho A, Trapani G. J. Chem. Soc., Perkin Trans. 1 1984; 1949
    • 16b Garrido F, Mann A, Wermuth C.-G. Tetrahedron Lett. 1997; 38: 63
    • 16c Lautens M, Fillion E, Sampat M. J. Org. Chem. 1997; 62: 7080
    • 16d Lu YJ, Hu B, Prashad M, Kabadi S, Repic O, Blacklock TJ. J. Heterocycl. Chem. 2006; 43: 1125
    • 16e Corbet BP, Matlock JV, Mas-Roselló J, Clayden J. C. R. Chim. 2017; 20: 634
    • 16f Firth JD, O’Brien P, Ferris L. J. Org. Chem. 2017; 82: 7023
  • 17 CCDC 2093628 [(R)-1b], CCDC 2093629 [(R)-1c], and CCDC 2093630 [(R)-4a] contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
    • 18a Bailey WF, Beak P, Kerrick ST, Ma S, Wiberg KB. J. Am. Chem. Soc. 2002; 124: 1889
    • 18b Stead D, Carbone G, O’Brien P, Campos KR, Coldham I, Sanderson A. J. Am. Chem. Soc. 2010; 132: 7260
    • 18c Lin W, Zhang K.-F, Baudoin O. Nat. Catal. 2019; 2: 882

      Representative data for 3ae:
    • 19a Gao K, Yu C.-B, Wang D.-S, Zhou Y.-G. Adv. Synth. Catal. 2012; 354: 483
    • 19b Hu J, Wang D, Zheng Z, Hu X. Chin. J. Chem. 2012; 30: 2664
    • 19c Fleischer S, Zhou S, Werkmeister S, Junge K, Beller M. Chem. Eur. J. 2013; 19: 4997
    • 19d Liu X.-W, Wang C, Yan Y, Wang Y.-Q, Sun J. J. Org. Chem. 2013; 78: 6276
    • 19e Qin J, Chen F, He Y.-M, Fan Q.-H. Org. Chem. Front. 2014; 1: 952
    • 19f Zhang Y, Zhao R, Bao RL.-Y, Shi L. Eur. J. Org. Chem. 2015; 3344
    • 20a McKinney AM, Jackson KR, Salvatore RN, Savrides E.-M, Edattel MJ, Gavin T. J. Heterocycl. Chem. 2005; 42: 1031
    • 20b Rueping M, Tato F, Schoepke FR. Chem. Eur. J. 2010; 16: 2688
    • 20c Ji Y.-G, Wei K, Liu T, Wu L, Zhang W.-H. Adv. Synth. Catal. 2017; 359: 933
  • 21 Fu KP, Lafredo SC, Foleno B, Isaacson DM, Barrett JF, Tobia AJ, Rosenthale ME. Antimicrob. Agents Chemother. 1992; 36: 860
  • 22 Yu X, Zhang M, Annamalai T, Bansod P, Narula G, Tse-Dinh Y.-C, Sun D. Eur. J. Med. Chem. 2017; 125: 515
  • 23 Schriewer M, Grohe K, Zeiler H.-J, Metzger KG. DE Patent 3543513A1, 1987
    • 24a Lister PD, Sanders CC. J. Antimicrob. Chemother. 1999; 43: 79
    • 24b Lacy MK, Lu W, Xu X, Tessier PR, Nicolau DP, Quintiliani R, Nightingale CH. Antimicrob. Agents Chemother. 1999; 43: 672
    • 24c Zhanel GG, Walters M, Laing N, Hoban DJ. J. Antimicrob. Chemother. 2001; 47: 435
    • 24d Lister PD. Diagn. Microbiol. Infect. Dis. 2002; 44: 43
    • 24e Garrison MW. J. Antimicrob. Chemother. 2003; 52: 503
    • 24f Lanie JA, Ng W.-L, Kazmierczak KM, Andrzejewski TM, Davidsen TM, Wayne KJ, Tettelin H, Glass JI, Winkler ME. J. Bacteriol. 2007; 189: 38
  • 25 Aldred KJ, Kerns RJ, Osheroff N. Biochemistry 2014; 53: 1565
  • 26 Wei S, Feng X, Du H. Org. Biomol. Chem. 2016; 14: 8026
  • 27 Rueping M, Antonchick AP, Theissmann T. Angew. Chem. Int. Ed. 2006; 45: 6751
  • 28 Figueras J. J. Org. Chem. 1966; 31: 803
  • 29 Chen Q.-A, Wang D.-S, Zhou Y.-G, Duan Y, Fan H.-J, Yang Y, Zhang Z. J. Am. Chem. Soc. 2011; 133: 6126