Incorporating Cyano Groups to a Conjugated Polymer Based on Double B\textleft\textright N-Bridged Bipyridine Units for Unipolar n-Type Organic Field-Effect Transistors

Xu Caoa,b,5 Yang Mina,c,5 Hongkun Tiana Jun Liua,b,10

a State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. of China
b University of Science and Technology of China, Hefei, 230023, P. R. of China
c University of Chinese Academy of Sciences, Beijing, 100049, P. R. of China
liujun@ciac.ac.cn

5 These authors contributed equally to this work.

Received: 24.07.2021
Accepted after revision: 02.09.2021
DOI: 10.1055/a-1639-2383; Art ID: OM-2021-07-0037-OA

Abstract. The development of n-type semiconductors lags far behind that of their p-type counterparts, demonstrating the exploration of exclusive n-type π-conjugated polymers is significant. The double B\textleft\textright N-bridged bipyridine (BNBP)-based polymers P-BNBP-TVT containing (E)-1,2-di(thiophen-2-yl)ethene (TVT) previously reported exhibits ambipolar character because of the electron-rich nature. Herein, we incorporated strong electron-withdrawing cyano groups into the 3,3′-positions of the TVT moiety to a copolymer P-BNBP-2CNTVT to develop n-type π-conjugated polymers. The LUMO/HOMO energy levels of P-BNBP-2CNTVT are -3.80/-5.95 eV, respectively, which are ~0.4 eV lower than that of P-BNBP-TVT without cyano groups. Unsurprisingly, compared with ambipolar P-BNBP-TVT, the organic field-effect transistors (OFETs) based on P-BNBP-2CNTVT showed unipolar n-type characteristics with an electron mobility of 0.026 cm2\cdot V-1\cdot s-1 and a lower threshold voltage of ~25 V as well as high Ion/Ioff of ~105. This study demonstrates that organoboron n-conjugated polymers could be regarded as a tool for constructing exclusive n-type semiconducting polymers used in OFETs.

Key words: n-conjugated polymers, cyano-functionalization, organic field-effect transistors, electron transports, n-type polymer semiconductors

Introduction

π-Conjugated polymers have attracted increasing attention for their potential applications in organic electronic devices due to their advantages of low cost and flexibility.4 Organic field-effect transistors (OFETs), one of the vital components of organic electronics, have been a hot topic because of their wide use in integrated circuits, displays, memory storage, skin sensors and so forth.2 Over the past three decades, significant progresses have been made in the state-of-the-art p-type semiconducting polymers in OFETs with impressive hole mobilities of higher than 10 cm2\cdot V-1\cdot s-1.3 However, the evolution of n-type semiconducting polymers still lags far behind that of their p-type counterparts, which is mainly attributed to the deficiency of n-conjugated polymers with high electron affinity and electron mobility. This unbalanced hole and electron mobilities will inevitably become an obstacle to organic complementary inverters and complementary logic circuits constructed with organic p–n junctions.4 Therefore, it is imperative to explore the high-performance n-type semiconducting polymers by rational molecular designs.

The dominating challenges in achieving effective electron transport in polymer semiconductors consist in the implementation of sufficiently low-lying LUMO/HOMO energy levels. The deep LUMO energy levels could enhance the electron injection from the electrodes and facilitate the stable electron transport, and a low enough HOMO energy levels can also block the hole injection and accumulation. However, it is proverbial that a number of high-mobility polymers based on naphthalene diimide (NDI),5 diketopyrrolopyrrole (DPP)6 and isoindigo (IID)7 exhibit ambipolar transport characteristics in OFETs, even though they typically contain electron-withdrawing imide- and amide-substituted...
groups. Conventionally, replacing hydrogen atoms in the backbone with strong electron-withdrawing groups including halogens (fluorine atoms and chlorine atoms)⁸ and cyano moiety⁹ could deepen the LUMO/HOMO energy levels further, which has been regarded as a facile and promising strategy to design exclusive n-type polymers. For example, Gao et al.⁷ reported that the multifluorination of IID-based polymers shows a conversion of ambipolar to n-type with a high electron mobility up to 4.97 cm²·V⁻¹·s⁻¹. Kim et al.¹⁰ also reported an electron mobility of 1.20 cm²·V⁻¹·s⁻¹ for DPP-based polymers containing cyano groups.

A highly π-extended (E)-1,2-di(thiophen-2-yl)ethene (TVT) unit is a versatile building block for high-performance polymers because of its good coplanarity to promote intrachain charge transport.¹¹ On the other hand, there are a lot of copolymers based on the TVT unit having p-type or ambipolar character owing to its electron-rich nature.³ In our previous study,¹³ we copolymerized the electron-deficient double B←N-bridged bipyridine (BNBP) with the TVT unit, and the corresponding copolymer (P-BNBP-TV) has been reported in our previous study.¹³ The synthetic route of P-BNBP-2CNTVT is depicted in Scheme 1, and the detailed synthetic procedures are provided in the Supporting Information. In terms of the syntheses reported, the monomer of 2CNTVT was successfully prepared under the treatment of lithium diisopropylamine (LDA), then we performed the Stille-coupling polymerization between the monomer of BNBP and the monomer of 2CNTVT. The long and branched alkyl chain 2-tetradecyloctadecyl was used to ensure the solubility. The crude product was purified by sequential Soxhlet extraction with acetone, n-hexane and chloroform to obtain the desired copolymer P-BNBP-2CNTVT with 93% yield. Expectably, P-BNBP-2CNTVT exhibits good solubility in common solvents, such as chloroform, chlorobenzene (CB), ο-dichlorobenzene and so on, so that we carried out ¹H NMR to confirm the chemical structure. And the number-average molecular weight (Mn) and polydispersity index (PDI) of the copolymer are estimated by gel permeation chromatography (GPC) using distribution polystyrene as a standard. The molecular weight (Mn) of P-BNBP-2CNTVT is 51.5 kDa with a

Results and Discussion

Synthesis and Characterizations. The chemical structures of P-BNBP-TV and P-BNBP-2CNTVT are shown in Figure 1. We decorated the cyano groups at the 3,3’-positions of the TVT unit to construct a promising n-type π-conjugated polymer based on the BNBP unit. P-BNBP-TV has been reported in our previous study.¹³ The synthetic route of P-BNBP-2CNTVT is depicted in Scheme 1, and the detailed synthetic procedures are provided in the Supporting Information. In terms of the syntheses reported, the monomer of 2CNTVT was successfully prepared under the treatment of lithium diisopropylamine (LDA), then we performed the Stille-coupling polymerization between the monomer of BNBP and the monomer of 2CNTVT. The long and branched alkyl chain 2-tetradecyloctadecyl was used to ensure the solubility. The crude product was purified by sequential Soxhlet extraction with acetone, n-hexane and chloroform to obtain the desired copolymer P-BNBP-2CNTVT with 93% yield. Expectedly, P-BNBP-2CNTVT exhibits good solubility in common solvents, such as chloroform, chlorobenzene (CB), ο-dichlorobenzene and so on, so that we carried out ¹H NMR to confirm the chemical structure. And the number-average molecular weight (Mn) and polydispersity index (PDI) of the copolymer are estimated by gel permeation chromatography (GPC) using distribution polystyrene as a standard. The molecular weight (Mn) of P-BNBP-2CNTVT is 51.5 kDa with a
Although with the twisty backbone, the LUMO of P-BNBP-2CNTVT remains delocalized along the conjugated backbone, which is the same as that of P-BNBP-TVT. However, the HOMO of P-BNBP-2CNTVT is mainly localized on the BNBP moiety as compared with P-BNBP-TVT, in which the HOMO is delocalized along the conjugated backbone, indicating the strong electron-withdrawing properties of cyano groups. Further, P-BNBP-2CNTVT based on DFT calculations exhibits deeper LUMO/HOMO energy levels of $-3.58 \text{ eV/} -5.78 \text{ eV}$ than those of P-BNBP-TVT of $-3.00 \text{ eV/} -5.28 \text{ eV}$. The results demonstrate that cyano-functionalization on the TVT moiety dramatically lowers the LUMO/HOMO energy levels, which could effectively enhance electron injection and block the hole injection to ensure the exclusively n-type transport character.

Photophysical and Electrochemical Properties
The UV-vis absorption spectra of P-BNBP-TVT and P-BNBP-2CNTVT in dilute CB solutions with the concentration of 10^{-3} M and in thin films are shown in Figure 3. The corresponding photophysical characteristics are summarized in Table 1. Both the absorption spectra of P-BNBP-TVT and P-BNBP-2CNTVT in CB solutions at room temperature exhibit the similar shape to their absorption spectra of thin films. In addition, the maximum absorption peaks of the two copolymers are almost impervious from the solutions to thin films, which demonstrates the strong pre-aggrega-

Table 1 Molecular, photophysical and electrochemical properties of P-BNBP-TVT and P-BNBP-2CNTVT

<table>
<thead>
<tr>
<th>Polymer</th>
<th>M_n [kg·mol$^{-1}$]</th>
<th>PDI</th>
<th>$\lambda_{max, sol}$ [nm]</th>
<th>$\lambda_{max, film}$ [nm]</th>
<th>E_g [eV]</th>
<th>$E_{onset, red}$ [eV]</th>
<th>$E_{onset, ox}$ [eV]</th>
<th>E_{LUMO} [eV]</th>
<th>E_{HOMO} [eV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-BNBP-TVT13</td>
<td>41.6</td>
<td>4.35</td>
<td>653</td>
<td>652</td>
<td>1.84</td>
<td>-1.40</td>
<td>+0.85</td>
<td>-3.40</td>
<td>-5.65</td>
</tr>
<tr>
<td>P-BNBP-2CNTVT</td>
<td>51.5</td>
<td>1.91</td>
<td>628</td>
<td>627</td>
<td>1.88</td>
<td>-1.0</td>
<td>+1.15</td>
<td>-3.80</td>
<td>-5.95</td>
</tr>
</tbody>
</table>

a M_n and PDI of the polymers were determined by GPC using polystyrene standards in TCB at 150 °C. b Measured in diluted CB solutions (10^{-3} M) at 25 °C. c Measured in thin films. d Calculated from the absorption band edge of the polymer films, $E_g = h\nu/\lambda_{edge}$. e LUMO and HOMO energy levels were determined from the first reduction potential ($E_{onset, red}$) and oxidation potential ($E_{onset, ox}$) (vs. Fc/Fc$^+$) with the equations of $E_{LUMO} = E_{HOMO} + (4.80 + E_{onset, ox}/E_{onset, red}) \text{ eV}$. f $\lambda_{max, film}$ = 5.49, $\lambda_{max, sol}$ = 5.04 eV. 13 Functionalization on TVT, in which the cyano groups are mainly localized on the TVT moiety as compared with P-BNBP-TVT, in which the HOMO is delocalized along the conjugated backbone, indicating the strong electron-withdrawing properties of cyano groups. Further, P-BNBP-2CNTVT based on DFT calculations exhibits deeper LUMO/HOMO energy levels of $-3.58 \text{ eV/} -5.78 \text{ eV}$ than those of P-BNBP-TVT of $-3.00 \text{ eV/} -5.28 \text{ eV}$. The results demonstrate that cyano-functionalization on the TVT moiety dramatically lowers the LUMO/HOMO energy levels, which could effectively enhance electron injection and block the hole injection to ensure the exclusively n-type transport character.
donating ability of the TVT moiety.6d,14 tramolecular charge transfer character after the cyano attachments of the cyano groups, which gives rise to distortion of the polymer backbone having been reported in the literatures.16 In a word, we developed a new n-type semiconductor based on a BNBP unit using cyano-function- alization.

To investigate the electrochemical properties of
P-BNBP-TVT and P-BNBP-2CNTVT, we carried out film CV measurements using ferrocene/ferroenium (Fc/Fc') as the internal standard, and a solution of 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF6) in acetonitrile was employed as the electrolyte. The CV curves are displayed in Figure 4. Both of the two copolymers exhibit obvious reduction and oxidation processes. On the basis of the onset potentials, the LUMO/HOMO energy levels are estimated to be -3.40 eV/−5.65 eV for P-BNBP-TVT and −3.80 eV/−5.95 eV for P-BNBP-2CNTVT, respectively. Obviously, the LUMO/HOMO energy levels of P-BNBP-2CNTVT dramatically decrease by 0.4 eV and 0.3 eV compared with those of P-BNBP-TVT, respectively, which demonstrates that the introduction of two strong electron-withdrawing cyano groups in the TVT moiety effectively lowers the LUMO/HOMO energy levels. The experimental LUMO/HOMO energy levels of the two copolymers are in good agreement with the theoretical calculations. The deeper LUMO/HOMO energy levels of P-BNBP-2CNTVT are expected to enhance the electron injection from the electrodes and generate a hole injection barrier.15 These results strongly imply that P-BNBP-2CNTVT is going to be a promising candidate for exclusively electron transport materials.

OFET Performance. P-BNBP-2CNTVT possesses low-lying LUMO/HOMO energy levels, which strongly motivates us to investigate the charge-transporting properties of the copolymer. The solution-processed OFETs with the top-gate/bottom-contact (TGBC) configuration were fabricated. Figure 5 illustrates the representative transfer and output characteristics of the OFETs. The detailed device optimization processes by different annealing temperatures are shown in Figure S6 and Table S1. Expectedly, in comparison to P-BNBP-TVT showing ambipolar character, P-BNBP-2CNTVT exhibits typical unipolar n-type transport characteristic because of the deep LUMO/HOMO energy levels enhancing the electron injection and restricting hole injection after introducing cyano groups. And the maximum electron mobility (μe) of P-BNBP-2CNTVT extracted in the saturation regime is up to 0.026 cm²·V⁻¹·s⁻¹ with high I_{on}/I_{off} of 10^5 after thermal annealing at 200°C. In addition, the OFETs based on P-BNBP-2CNTVT show a lower threshold voltage (V_T) of about 25 V (V_T ~50 V for P-BNBP-TVT) and leakage current (I_D) (Figure S7). All the above observations verified that cyano-functionalization could effectively down-shift the LUMO/HOMO energy levels. However, the causations for moderate electron mobility probably are attributed to the steric repulsion with neighboring BNBP units after the attachments of the cyano groups, which gives rise to distortion of the polymer backbone having been reported in the literatures.18 In a word, we developed a new n-type semiconductor based on a BNBP unit using cyano-functionalization.

Figure 3 Normalized UV-vis absorption spectra of PBNBP-TVT and P-BNBP-2CNTVT in their a) diluted CB solutions (10⁻⁵ M) and b) thin films.

Figure 4 a) Cyclic voltammograms of P-BNBP-TVT and P-BNBP-2CNTVT in thin films (Fc/Fc’ = ferrocene/ferroenium); b) Schematic of their LUMO/HOMO energy level alignments.

Figure 5 a) Transfer and b) output curves of the OFETs based on the P-BNBP-2CNTVT films annealed at 200°C.
Film Morphology and Microstructural Analysis. The film morphology of semiconductors plays a crucial role in OFETs’ performance. We firstly performed atomic force microscopy (AFM) of P-BNBP-2CNTVT thin films to investigate the relationship between the film morphology and device performances. Figures 6a and S8 show the AFM height images and phase images of the P-BNBP-2CNTVT films after thermal annealing at different temperatures of 100, 200 and 300 °C. The P-BNBP-2CNTVT film annealed at 200 °C shows continuous and smooth film topography with the smallest root mean square surface roughness value of 0.57 nm, which indicates its enhanced film ordering, taking an account for the improved electron transport performance in the OFETs.17

We also utilized grazing incidence X-ray diffraction (GI-XRD) to clarify the polymer crystallinity and packing structure, which are closely associated with transport properties. The out-of-plane and in-plane XRDs of the P-BNBP-2CNTVT films are displayed in Figures 6b and S9. The previous study reported that P-BNBP-2CNTVT exhibits edge-on packing mode in thin films with a compact π–π stacking distance of 0.36 nm along the in-plane direction, which is beneficial to the interchain charge transport.13 However, the P-BNBP-2CNTVT film gives a (100) diffraction peak at 2θ = 4.5° and a (010) diffraction peak at 2θ = 21.2° along the out-of-plane direction. Lamellar and π–π stacking distance based on the (100) and (010) diffraction peaks could be calculated to be 1.96 nm and 0.42 nm, respectively. And there are no obvious diffraction peaks in the in-plane direction. The large π–π stacking distance is not favorable for electron transport.18 These results demonstrate that the introduction of cyano groups in polymer backbones causing steric hindrance has undesirable influences on the molecular packing, which gives the reason why P-BNBP-2CNTVT exhibits moderate electron mobilities.

Conclusions

In summary, we successfully synthesized a novel unipolar n-type transport polymer semiconductor based on a BNBP unit, P-BNBP-2CNTVT, where the cyano groups are decorated in the TVT moiety. In comparison to P-BNBP-TVT without cyano groups, the LUMO/HOMO energy levels of P-BNBP-2CNTVT dramatically down-shift by 0.4 eV and 0.3 eV, respectively, demonstrating the high electron affinity which are very desirable for electron injection. Thus, the OFETs based on P-BNBP-2CNTVT show unipolar n-type behavior with a moderate electron mobility of 0.026 cm²·V⁻¹·s⁻¹. Moreover, P-BNBP-2CNTVT manifests an unsatisfying π–π stacking distance up to 0.42 nm owing to the large steric hindrance after the incorporation of cyano groups, which gives an explanation for the moderate electron mobility. In a word, this study demonstrates that organoboron π-conjugated polymers could be regarded as a tool for constructing exclusive n-type semiconducting polymers used in OFETs. And we are convinced that the enhanced electron mobility of organoboron π-conjugated polymers could be realized through the optimizations of chemical structures and thin film morphology, and the further investigations are in progress in our lab.

Experimental Section

All reagents and solvents were purchased at reagent grade from commercial suppliers and were used without further purification unless otherwise noted. 1H and 13C NMR spectra were measured with a Bruker AV-400 (500 MHz for 1H and 126 MHz for 13C) spectrometer in CDCl₃ and C₆D₆ at 25 °C or deuterated 1,1,2,2-tetrachloroethane (C₂D₂Cl₄) at 100 °C. Chemical shifts are reported in δ ppm using CDCl₃ (7.26 ppm), C₂D₂Cl₄ (5.98 ppm) and C₆D₆ (7.16 ppm) for 1H NMR, as well as using CDCl₃ (77.16 ppm) for 13C NMR as an internal standard. The molecular weights of the polymers were determined by gel permeation GPC on a PL-GPC 220-type at 150 °C. 1,2,4-Trichlorobenzene (TCB) was used as the eluent and monodisperse polystyrene was used as the standard. UV-vis absorption spectra were measured with a Shimadzu UV-3600 spectrometer. CV was performed on an CHI660a electrochemical workstation using Bu₄NClO₄ (0.1 M) in acetonitrile as the electrolyte solution and ferrocene as an internal reference at a scan rate of 50 mV·s⁻¹. The CV cell consisted of a glassy carbon working electrode, a Pt wire counter electrode, and a standard calomel reference electrode. The polymer was casted on the working...
the 2
Lab with an X
in-plane XRD profiles were obtained using a Rigaku Smar-
matography using dichloromethane: petroleum (2 : 1 v/v) to
solvent was removed and purified by silica gel column chro-
dichloromethane several times and dried over Na2SO4. The
short, 2 H), 6.95 (d, J = 5.4 Hz, 2 H).

Procedures

(E)-1,2-Bis(3-bromothiophen-2-yl)ethene
(E)-1,2-Bis(3-bromothiophen-2-yl)ethene was prepared us-
ing improved post-treatment methods with higher yield
compared to references. TiCl4 (4.38 mL, 39.9 mmol) was
added dropwise to a slurry of 3-bromothiophene-2-carbal-
dehyde 1 (5 g, 26.2 mmol) in THF (75 mL) with stirring at
−18°C. After stirring at this temperature for 30 min, Zn pow-
ders (5.2 g, 79.5 mmol) were divided into several equal parts
and added in over a period of 30 min. The mixture was
stirred at −18°C for another 30 min, and then refluxed for
4 h. The reaction was quenched by adding ice-cold H2O. The
mixture was extracted with dichloromethane several times
and dried over Na2SO4. The solvent was removed and puri-
ified by recrystallization from chloroform to give a pale
brown solid. Yield: 57% (2.7 g). The 1H NMR spectrum is con-
sistent with the previous report.

1H NMR (500 MHz, CDCl3, ppm): δ 7.20 (d, J = 5.4 Hz, 2 H),
7.12 (s, 2 H), 6.98 (d, J = 5.4 Hz, 2 H).

(E)-1,2-Bis(3-cyanothiophene-2-yl)ethene
A mixture of (E)-1,2-Bis(3-bromothiophene-2-yl)ethene
(1.5 g, 4.28 mmol) and CuCN (1.92 g, 21.4 mmol) in anhydro-
ous DMF (65 mL) was stirred for 24 h at 150°C. Subsequently,
it was allowed to cool to 70°C. Then, FeCl3⋅6H2O (4.65 g,
17.14 mmol) in 2 M aqueous HCl (9 mL) was added and
stirred at 70°C for 1 h. Next the mixture was extracted with
dichloromethane several times and dried over Na2SO4. The
solvent was removed and purified by silica gel column chro-
matography using dichloromethane: petroleum (2 : 1 v/v) to
obtain the desired compound as a yellow solid. Yield: 79%
(0.82 g). The 1H NMR spectrum is consistent with the pre-
vious report.

1H NMR (500 MHz, CDCl3, ppm): δ 7.39 (s, 2 H), 7.35 (d,
J = 5.1 Hz, 2 H), 7.22 (d, J = 5.1 Hz, 2 H).

(E)-1,2-Bis(5-(trimethylstannyl)-3-cyanothiophene-2-
ylethene (2CNTVT)
2CNTVT was prepared according to references. The fresh
made LDA (1.0 M LDA, 2.42 mL, 2.42 mmol) was added drop-
wise at −78°C to a solution of compound 3 (0.24 g, 1 mmol)
in anhydrous THF (34 mL). After stirring for 1.5 h at −78°C,
trimethyltin chloride (0.6 g, 3 mmol) was added in one por-
tion to the reaction mixture. Subsequently, the reaction
flask was warmed to room temperature and stirred another
2 h. After the reaction finished, the mixture was quenched
with distilled cold water and extracted with cold diethyl
ether. The organic layer was dried over Na2SO4. After remov-
ing the solvents, the obtained residue was purified by re-
crystallization from ethanol to give a yellow product. Yield:
50% (0.28 g). The 1H NMR spectrum is consistent with the
previous report.

1H NMR (500 MHz, CD2D6, ppm): δ 7.50 (s, 2 H), 6.72 (s,
2 H), 0.11 (s, 18 H).

Polymer P-BNBP-2CNTVT
Starting materials of BNBP (100 mg, 0.075 mmol), 2CNTVT
(42.4 mg, 0.075 mmol), Pd2(dba)3⋅CHCl3 (1.6 mg,
0.02 mmol) and P(o-Tolyl)3 (3.6 mg, 0.16 mmol) were mixed
under argon, and then dried toluene (7.5 mL) was added.
The mixture was stirred at 120°C for 24 h. After cooling, the
solvent was dispersed in methanol and then the precipitate
was collected. The obtained dark solid was purified by Soxh-
let extraction using acetone, hexane and chloroform. The
chloroform fraction was concentrated and poured into
methanol, which were collected and dried in vacuum over-
night. Yield: 100.0 mg (93%). GPC (TCB, polystyrene stan-
dard, 150°C): Mn = 51 523, PDI = 1.91.

1H NMR (400 MHz, C6D6, ppm): δ 9.73 (s, 2 H),
9.05 (s, 2 H), 8.93 (s, 2 H), 8.89 (s, 2 H), 4.98 (s, 4 H),
3.25 (s, 2 H), 2.69–2.83 (m, 32 H), 2.60–2.64 (m, 80 H), 2.23 (t,
12 H).

Device Fabrication and Characterization
TGB OTFTs were fabricated on silicon wafer covered with
300 nm SiO2. The substrates were first cleaned with double-
distilled water, acetone and isopropanol in an ultrasonic
bath and then dried under a nitrogen flow. The substrates
were heated to 120°C for 1 hour and finally treated with a
UV-ozone instrument for 15 min. First, Au source/drain elec-
drodes (~25 nm) were deposited on cleaned bare Si/SiO2 wa-
vers, which were collected and dried in vacuum over-
night. The polymer films were spin-coated on the sub-
strates, followed by thermal annealing at 200°C for 10 min.
Then the solution of 80 mg/mL poly(methylmethacrylate)
(PMMA) (product no. 182230 from Aldrich, Mn = 120 kDa)
in butyl acetate (~500 nm) as a dielectric was deposited by spin coating at 2000 rpm for 2 min and then annealed at 100 °C for 1 h. Finally, Al (~70 nm) was vacuum-deposited as a gate electrode. Field-effect mobility was extracted in the saturation regime by using the equation: $I_D = \frac{\mu C W}{2 L} (V_G - V_T)^2$, where I_D is the drain-source current, μ is the field-effect mobility, C is the capacitance per unit area of the gate dielectric layer (dielectric constant of PMMA, 500 nm, 5.5 nF/cm²), and V_G and V_T are the gate voltage and threshold voltage, respectively.

Funding Information

This study was supported by the National Key Research and Development Program of China (2018YFE0010600) funded by MOST and Natural Science Foundation of China (No. 21625403, 21875244).

Supporting Information

Supporting Information for this article is available online at https://doi.org/10.1055/a-1639-2383.

Conflict of Interest

The authors declare no conflict of interest.

References

