Synlett 2021; 32(20): 2067-2070
DOI: 10.1055/a-1644-4876
letter

Photodriven Dehydrogenative Homocoupling of Benzylic C–H Bonds Forming Strained C–C Bonds

Naoki Ishida
,
Mingon Son
,
Tairin Kawasaki
,
Misato Ito
,
This work was supported by the Japan Society for the Promotion of Science [JSPS KAKENHI Grant Numbers JP20H04810 (Hybrid Catalysis, N.I.) and JP21J12846 (T.K.)].


Abstract

A photoinduced dehydrogenative homocoupling reaction of alkylarenes is reported. Gaseous hydrogen is evolved as the sole byproduct and neither oxidants nor hydrogen acceptors are required. The present reaction offers an environmentally benign and atom-economical means for forming sterically strained C–C single bonds. It also gives a remarkable example of photodriven reactions overcoming a considerable rise in energy.

Supporting Information



Publication History

Received: 25 August 2021

Accepted after revision: 14 September 2021

Accepted Manuscript online:
14 September 2021

Article published online:
01 October 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Hook SC. W. Tetrahedron Lett. 1975; 38: 3321
    • 1b McMurry JE, Silvestri M. J. Org. Chem. 1975; 40: 2687
    • 1c Popielarz R, Arnold DR. J. Am. Chem. Soc. 1990; 112: 3068
    • 2a Kolbe H. Ann. Chem. Pharm. 1848; 64: 339
    • 2b Habibi MM, Farhadi S. Tetrahedron Lett. 1999; 40: 2821
    • 2c Kodama T, Kubo M, Shinji W, Ohkubo K, Tobisu M. Chem. Sci. 2020; 11: 12109
  • 3 Nelson SF, Bartlett PD. J. Am. Chem. Soc. 1966; 88: 137
  • 4 Resendiz MJ. E, Garcia-Garibay MA. Org. Lett. 2005; 7: 371
    • 5a Huang RL, Kum-Tatt L. J. Chem. Soc. 1954; 2570
    • 5b Wang Z.-J, Lv J.-J, Yi R.-N, Xiao M, Feng J.-J, Liang Z.-W, Wang A.-J, Xu X. Adv. Synth. Catal. 2018; 360: 932
    • 6a Kawasaki T, Ishida N, Murakami M. J. Am. Chem. Soc. 2020; 142: 3366

    • See also:
    • 6b Kawasaki T, Ishida N, Murakami M. Angew. Chem. Int. Ed. 2020; 59: 18267
    • 6c Kawasaki T, Yamazaki K, Tomono R, Ishida N, Murakami M. Chem. Lett. 2021; 50: 1684
    • 7a Zhang P, Le CC, MacMillan DW. C. J. Am. Chem. Soc. 2016; 138: 8084
    • 7b Rohe S, Morris AO, MacCallum T, Barriault L. Angew. Chem. Int. Ed. 2018; 57: 15664
    • 7c Wang Z, Ji X, Han T, Deng G.-J, Huang H. Adv. Synth. Catal. 2019; 361: 5643
    • 7d Shu X, Huan L, Huang Q, Huo H. J. Am. Chem. Soc. 2020; 142: 19058

    • See also:
    • 7e Shields BJ, Doyle AG. J. Am. Chem. Soc. 2016; 138: 12719
  • 8 Lowry MS, Goldsmith JI, Slinker JD, Rohl R, Pascal RA, Malliaras GG, Bernhard S. Chem. Mater. 2005; 17: 5712
  • 9 Durandetti M, Devaud M, Perichon J. New J. Chem. 1996; 20: 659
  • 10 When the reaction was performed in the presence of TEMPO, it trapped the benzylic radical intermediate.6a
  • 11 Powers DC, Anderson BL, Nocera DG. J. Am. Chem. Soc. 2013; 135: 18876
  • 12 DFT calculations at the ωB97XD/6-31+G (d) level of theory; at 298 K in gas phase.

    • A review on dehydrogenative coupling that includes energetically uphill ones:
    • 13a Wang H, Gao X, Lv Z, Abdeliah T, Lei A. Chem. Rev. 2019; 119: 6769

    • Selected examples:
    • 13b Singh K, Staig SJ, Weaver JD. J. Am. Chem. Soc. 2014; 136: 5275
    • 13c Molloy JJ, Metternich JB, Daniliuc CG, Watson AJ. B, Gilmour R. Angew. Chem. Int. Ed. 2018; 57: 3168
    • 13d Hölzl-Hobmeier A, Bauer A, Silva AV, Huber SM, Bannwarth C, Bach T. Nature 2018; 564: 240
    • 13e Ota E, Wang H, Frye NL, Knowles RR. J. Am. Chem. Soc. 2019; 141: 1457 ; and references cited therein
  • 14 Dehydrogenative Coupling of 1: a Typical Procedure To an oven-dried 5 mL Schlenk tube were added cumene 1 (24.3 mg, 0.20 mmol), (Ir[dF(CF3)ppy]2dtbbpy)PF6 (4.5 mg, 0.004 mmol), NiBr2(dtbbpy) (2.0 mg, 0.004 mmol), and ethyl acetate (5.0 mL) under a nitrogen atmosphere. The tube was capped with rubber septa, and the solution was stirred and irradiated with blue LEDs at room temperature for 24 h. Then, the resulting mixture was filtrated through a short column of silica gel using ethyl acetate as the eluent. The filtrate was concentrated under reduced pressure. The residue was purified by PTLC (hexane/dichloromethane = 5:1, Rf = 0.5) to give 2,3-dimethyl-2,3-diphenylbutane (2, 20.2 mg, 0.085 mmol, 84%) as white solids. 1H NMR (400 MHz, CDCl3): δ = 7.15–7.24 (m, 6 H), 7.03–7.12 (m, 4 H), 1.32 (s, 12 H). 13C NMR (100 MHz, CDCl3): δ = 146.8, 128.6, 126.6, 125.5, 43.6, 25.2. The NMR spectra were in agreement with those reported.4