Synthesis 2022; 54(03): 535-544
DOI: 10.1055/a-1661-6124
short review

Aerobic Oxidations via Organocatalysis: A Mechanistic Perspective

Yongtao Wang
a   Department of Chemistry and ZJU-NHU United R&D Center, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
b   Center of Chemistry for Frontier Technologies, Zhejiang University, 38 Zheda Road, Hangzhou, P. R. China
,
Jia Yao
a   Department of Chemistry and ZJU-NHU United R&D Center, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
,
Haoran Li
a   Department of Chemistry and ZJU-NHU United R&D Center, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, P. R. China
c   State Key Laboratory of Chemical Engineering and College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, P. R. China
› Author Affiliations
This work was supported by the Fundamental Research Funds for the Central Universities, and the National Natural Science Foundation of China (No. 22073081).


Abstract

This review focuses on recent advances and mechanistic views of aerobic C(sp3)–H oxidations catalyzed by organocatalysts, where metal catalysis and photocatalysis are not included.

1 Introduction

2 Carbanion Route: TBD-Catalyzed C(sp3)–H Oxygenation

2.1 α-Hydroxylation of Ketones

2.2 Carbonylation of Benzyl C(sp3)–H

3 Radical Route: NHPI-Catalyzed C(sp3)–H Oxidation

3.1 N-Oxyl Radicals and Mechanisms

3.2 Oxygenation of Benzyl C(sp3)–H

3.3 Solvent Effects

4 Hydride-Transfer Route: TEMPO-Catalyzed Oxidations

4.1 Oxoammonium Cation and Mechanisms

4.2 Dehydrogenation of Alcohols

4.3 Oxygenation of Benzyl C(sp3)–H

5 Conclusions and Outlook



Publication History

Received: 02 July 2021

Accepted after revision: 05 October 2021

Accepted Manuscript online:
05 October 2021

Article published online:
30 November 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Teles JH, Hermans I, Franz G, Sheldon RA. Oxidation . In Ullmann’s Encyclopedia of Industrial Chemistry . Wiley-VCH; Weinheim: 2015
    • 1b Gavriilidis A, Constantinou A, Hellgardt K, Hii KK. M, Hutchings GJ, Brett GL, Kuhn S, Marsden SP. React. Chem. Eng. 2016; 1: 595
  • 2 Sterckx H, Morel B, Maes BU. W. Angew. Chem. Int. Ed. 2019; 58: 7946
    • 3a Que L, Tolman WB. Nature 2008; 455: 333
    • 3b Elwell CE, Gagnon NL, Neisen BD, Dhar D, Spaeth AD, Yee GM, Tolman WB. Chem. Rev. 2017; 117: 2059
    • 3c Trammell R, Rajabimoghadam K, Garcia-Bosch I. Chem. Rev. 2019; 119: 2954
    • 3d Allen SE, Walvoord RR, Padilla-Salinas R, Kozlowski MC. Chem. Rev. 2013; 113: 6234
    • 3e Costas M. Coord. Chem. Rev. 2011; 255: 2912
    • 3f Goldsmith CR. In Alkane Functionalization . Pombeiro AJ. L, Guedes da Silva MF. C. John Wiley & Sons; Chichester: 2019: 211
    • 5a Ryland BL, McCann SD, Brunold TC, Stahl SS. J. Am. Chem. Soc. 2014; 136: 12166
    • 5b Ishii Y, Iwahama T, Sakaguchi S, Nakayama K, Nishiyama Y. J. Org. Chem. 1996; 61: 4520
    • 6a MacMillan DW. C. Nature 2008; 455: 304
    • 6b Qin Y, Zhu L, Luo S. Chem. Rev. 2017; 117: 9433
    • 6c Guo H, Fan YC, Sun Z, Wu Y, Kwon O. Chem. Rev. 2018; 118: 10049
    • 6d Oliveira V, Cardoso M, Forezi L. Catalysts 2018; 8: 605
  • 7 Chen K, Zhang P, Wang Y, Li H. Green Chem. 2014; 16: 2344
  • 8 Luo Y.-R. Comprehensive Handbook of Chemical Bond Energies. CRC Press; Boca Raton: 2007
    • 9a Sheldon RA, Arends IW. C. E. Adv. Synth. Catal. 2004; 346: 1051
    • 9b Recupero F, Punta C. Chem. Rev. 2007; 107: 3800
    • 10a Ye W, Leow D, Goh SL. M, Tan C.-T, Chian C.-H, Tan C.-H. Tetrahedron Lett. 2006; 47: 1007
    • 10b Fu X, Tan CH. Chem. Commun. 2011; 47: 8210
    • 10c Wang Y, Wang G, Yao J, Li H. ACS Catal. 2019; 9: 6588
    • 11a Coles MP. Chem. Commun. 2009; 3659
    • 11b Kee CW, Tan C.-H. Chiral Guanidines as Asymmetric Organocatalysts. In Sustainable Catalysis: Without Metals or Other Endangered Elements, Part 2, Chap. 23, North M. Royal Society of Chemistry; Cambridge: 2015: 381
  • 12 Ye W, Xu J, Tan C.-T, Tan C.-H. Tetrahedron Lett. 2005; 46: 6875
  • 13 Simón L, Goodman JM. J. Org. Chem. 2007; 72: 9656
    • 14a Sato K, Aoki M, Noyori R. Science 1998; 281: 1646
    • 14b Amitouche D, Haouas M, Mazari T, Mouanni S, Canioni R, Rabia C, Cadot E, Marchal-Roch C. Appl. Catal., A 2018; 561: 104
    • 15a Arai T, Sato T, Noguchi H, Kanoh H, Kaneko K, Yanagisawa A. Chem. Lett. 2006; 35: 1094
    • 15b Liang YF, Jiao N. Angew. Chem. Int. Ed. 2014; 53: 548
    • 15c Sim S.-BD, Wang M, Zhao Y. ACS Catal. 2015; 5: 3609
  • 16 Wang Y, Lu R, Yao J, Li H. Angew. Chem. Int. Ed. 2021; 60: 6631
  • 17 Wang Y, Wen Z, Zhang Y, Wang X, Yao J, Li H. Phys. Chem. Chem. Phys. 2021; 23: 5864
  • 18 Bos M, Buttard F, Vallée A, Riguet E. Synthesis 2019; 51: 3151
  • 19 Lee S, Kim SA, Jang H.-Y. ACS Omega 2019; 4: 17934
  • 20 Dao R, Wang X, Chen K, Zhao C, Yao J, Li H. Phys. Chem. Chem. Phys. 2017; 19: 22309
    • 21a Chen K, Yao J, Chen Z, Li H. J. Catal. 2015; 331: 76
    • 21b Chen K, Xie H, Mao J, Jiang K. J. Catal. 2016; 344: 229
    • 22a Semmelhack MF, Schmid CR, Cortés DA. Tetrahedron Lett. 1986; 27: 1119
    • 22b Wertz S, Studer A. Green Chem. 2013; 15: 3116
    • 22c Tebben L, Studer A. Angew. Chem. Int. Ed. 2011; 50: 5034
  • 23 Zheng G, Liu C, Wang Q, Wang M, Yang G. Adv. Synth. Catal. 2009; 351: 2638
    • 24a Ishii Y, Sakaguchi S. Catal. Today 2006; 117: 105
    • 24b Melone L, Punta C. Beilstein J. Org. Chem. 2013; 9: 1296
    • 24c Kushch OV, Hordieieva IO, Kompanets MO, Zosenko OO, Opeida IA, Shendrik AN. J. Org. Chem. 2021; 86: 3792
  • 25 Ishii Y, Nakayama K, Takeno M, Sakaguchi S, Iwahama T, Nishiyama Y. J. Org. Chem. 1995; 60: 3934
  • 26 Yang G, Zhang Q, Miao H, Tong X, Xu J. Org. Lett. 2005; 7: 263
  • 27 Zhou L, Chen Y, Yang X, Su Y, Zhang W, Xu J. Catal. Lett. 2008; 125: 154
  • 28 Wang H, Liu J, Qu J.-P, Kang Y.-B. J. Org. Chem. 2020; 85: 3942
  • 29 Fukuda O, Sakaguchi S, Ishii Y. Adv. Synth. Catal. 2001; 343: 809
  • 30 Eggersdorfer M, Laudert D, Letinois U, McClymont T, Medlock J, Netscher T, Bonrath W. Angew. Chem. Int. Ed. 2012; 51: 12960
  • 31 Wang C, Wang G, Mao J, Yao Z, Li H. Catal. Commun. 2010; 11: 758
  • 32 Yu J, Jin Y, Lu M. Adv. Synth. Catal. 2015; 357: 1175
  • 33 Gunchenko PA, Li J, Liu B, Chen H, Pashenko AE, Bakhonsky VV, Zhuk TS, Fokin AA. Mol. Catal. 2018; 447: 72
    • 34a Iwahama T, Syojyo K, Sakaguchi S, Ishii Y. Org. Process Res. Dev. 1998; 2: 255
    • 34b Schuchardt U, Cardoso D, Sercheli R, Pereira R, da Cruz RS, Guerreiro MC, Mandelli D, Spinacé EV, Pires EL. Appl. Catal., A 2001; 211: 1
  • 35 Liang F, Zhong W, Xiang L, Mao L, Xu Q, Kirk SR, Yin D. J. Catal. 2019; 378: 256
  • 36 Nutting JE, Rafiee M, Stahl SS. Chem. Rev. 2018; 118: 4834
  • 37 Dao R, Zhao C, Yao J, Li H. Phys. Chem. Chem. Phys. 2018; 20: 28249
    • 38a Bobbitt JM. J. Org. Chem. 1998; 63: 9367
    • 38b Bobbitt JM, Bartelson AL, Bailey WF, Hamlin TA, Kelly CB. J. Org. Chem. 2014; 79: 1055
  • 39 Bailey WF, Bobbitt JM, Wiberg KB. J. Org. Chem. 2007; 72: 4504
    • 40a Hoover JM, Stahl SS. J. Am. Chem. Soc. 2011; 133: 16901
    • 40b Hoover JM, Ryland BL, Stahl SS. J. Am. Chem. Soc. 2013; 135: 2357
    • 40c Walroth RC, Miles KC, Lukens JT, MacMillan SN, Stahl SS, Lancaster KM. J. Am. Chem. Soc. 2017; 139: 13507
    • 40d Rabeah J, Bentrup U, Stosser R, Bruckner A. Angew. Chem. Int. Ed. 2015; 54: 11791
  • 41 Wang X, Liu R, Jin Y, Liang X. Chem. Eur. J. 2008; 14: 2679
  • 42 Wertz S, Studer A. Adv. Synth. Catal. 2011; 353: 69
  • 43 Lauber MB, Stahl SS. ACS Catal. 2013; 3: 2612
  • 44 Shibuya M, Osada Y, Sasano Y, Tomizawa M, Iwabuchi Y. J. Am. Chem. Soc. 2011; 133: 6497
  • 45 Zhang Z, Gao Y, Liu Y, Li J, Xie H, Li H, Wang W. Org. Lett. 2015; 17: 5492
  • 46 Thapa P, Hazoor S, Chouhan B, Vuong TT, Foss FW. Jr. J. Org. Chem. 2020; 85: 9096
  • 47 Zhang B, Cui Y, Jiao N. Chem. Commun. 2012; 48: 4498
  • 48 Rahimi A, Azarpira A, Kim H, Ralph J, Stahl SS. J. Am. Chem. Soc. 2013; 135: 6415