Synthesis 2022; 54(05): 1231-1249
DOI: 10.1055/a-1671-0085
short review

Organic Sulfinic Acids and Salts in Visible Light-Induced Reactions

a   School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. of China
,
Mingzhou Shang
b   Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. of China
,
Hongjian Lu
b   Institute of Chemistry and BioMedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. of China
› Author Affiliations
Financial support for this work was provided by the National Natural Science Foundation of China (21871131, 22071100) and National Key R & D Program of China (2018YFE0208600).


Abstract

Sulfinic acids and their salts are a useful source of sulfur-containing structures. Photocatalysis of these compounds with visible light enables to achieve various transformations under mild conditions. This review summarizes visible-light-induced reactions of sulfinic acids and their salts. It is organized by reaction type and brief discussions on plausible reaction mechanisms for typical transformations are presented.

1 Introduction

2 Sulfonylation Reactions

2.1 Sulfonylation of Alkenes

2.2 Sulfonylation of Alkynes

2.3 Sulfonylation of Arenes

2.4 sp3 C–H Functionalization

3 Desulfonylation Reactions

4 Sulfenylation Reactions

4.1 Sulfenylation of Heteroarenes

4.2 Sulfenylation of Carbonyl Chlorides

5 Conclusions



Publication History

Received: 24 September 2021

Accepted after revision: 17 October 2021

Accepted Manuscript online:
17 October 2021

Article published online:
30 November 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Scott KA, Njardarson JT. Top. Curr. Chem. 2018; 376: 5
  • 2 Devendar P, Yang G.-F. Top. Curr. Chem. 2017; 375: 82
  • 3 Turkoglu G, Cinar ME, Ozturk T. In Sulfur Chemistry, Topics in Current Chemistry Collections . Jiang X. Springer International Publishing; Cham: 2019: 79-123
  • 4 Wang N, Saidhareddy P, Jiang X. Nat. Prod. Rep. 2020; 37: 246
  • 5 Thomsen I, Clausen K, Scheibye S, Lawesson S.-O. Org. Synth. 1984; 62: 158
  • 6 Ozturk T, Ertas E, Mert O. Chem. Rev. 2007; 107: 5210
  • 7 Hobson JT. Justus Liebigs Ann. Chem. 1858; 106: 287
  • 8 Kalle W. Justus Liebigs Ann. Chem. 1861; 119: 153
  • 9 Liang S, Kamil H, Friedrich M, Manolikakes G. Eur. J. Org. Chem. 2020; 4664
  • 10 Courtin A. Helv. Chim. Acta 1983; 66: 1046
  • 11 Drabowicz J, Pacholczyk M. Phosphorus Sulfur Relat. Elem. 1987; 29: 257
  • 12 Truce WE, Lyons JF. J. Am. Chem. Soc. 1951; 73: 126
  • 13 Oae S, Togo H. Bull. Chem. Soc. Jpn. 1983; 56: 3802
  • 14 Mulina OM, Ilovaisky AI, Parshin VD, Terent’ev AO. Adv. Synth. Catal. 2020; 362: 4579
  • 15 Ischay MA, Anzovino ME, Du J, Yoon TP. J. Am. Chem. Soc. 2008; 130: 12886
  • 16 Nicewicz DA, MacMillan DW. C. Science 2008; 322: 77
  • 17 Cannalire R, Pelliccia S, Sancineto L, Novellino E, Tron GC, Giustiniano M. Chem. Soc. Rev. 2021; 50: 766
  • 18 Crespi S, Fagnoni M. Chem. Rev. 2020; 120: 9790
  • 19 Pagire SK, Föll T, Reiser O. Acc. Chem. Res. 2020; 53: 782
  • 20 Zhou Q.-Q, Zou Y.-Q, Lu L.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2019; 58: 1586
  • 21 Chen B, Wu L.-Z, Tung C.-H. Acc. Chem. Res. 2018; 51: 2512
  • 22 Staveness D, Bosque I, Stephenson CR. J. Acc. Chem. Res. 2016; 49: 2295
  • 23 Yan M, Lo JC, Edwards JT, Baran PS. J. Am. Chem. Soc. 2016; 138: 12692
  • 24 Schultz DM, Yoon TP. Science 2014; 343: 1239176
  • 25 Crisenza GE. M, Mazzarella D, Melchiorre P. J. Am. Chem. Soc. 2020; 142: 5461
  • 26 Alonso C, Martínez de Marigorta E, Rubiales G, Palacios F. Chem. Rev. 2015; 115: 1847
  • 27 Langlois BR. In Modern Synthesis Processes and Reactivity of Fluorinated Compounds . Groult H, Leroux FR, Tressaud A. Elsevier; Amsterdam: 2017
  • 28 Guyon H, Chachignon H, Cahard D. Beilstein J. Org. Chem. 2017; 13: 2764
  • 29 Ricci G, Duprè S, Federici G, Spoto G, Matarese R, Cavallini D. Physiol. Chem. Phys. 1978; 10: 435
  • 30 Ricci G, Chiaraluce R, Pitari G, Dupre S, Fujii O, Hosokawa Y, Yamaguchi K. J. Nutr. Sci. Vitaminol. 1989; 35: 143
  • 31 Meyer AU, Jäger S, Prasad Hari D, König B. Adv. Synth. Catal. 2015; 357: 2050
  • 32 Zhang G, Zhang L, Yi H, Luo Y, Qi X, Tung C.-H, Wu L.-Z, Lei A. Chem. Commun. 2016; 52: 10407
  • 33 Yang D, Huang B, Wei W, Li J, Lin G, Liu Y, Ding J, Sun P, Wang H. Green Chem. 2016; 18: 5630
  • 34 Burkhard RK, Sellers DE, DeCou F, Lambert JL. J. Org. Chem. 1959; 24: 767
  • 35 Wen J, Yang X, Sun Z, Yang J, Han P, Liu Q, Dong H, Gu M, Huang L, Wang H. Green Chem. 2020; 22: 230
  • 36 Peng Z, Hong Y.-Y, Peng S, Xu X.-Q, Tang S.-S, Yang L.-H, Xie L.-Y. Org. Biomol. Chem. 2021; 19: 4537
  • 37 Guo R, Gui Q, Wang D, Tan Ze. Catal. Lett. 2014; 144: 1377
  • 38 Xu Y, Tang X, Hu W, Wu W, Jiang H. Green Chem. 2014; 16: 3720
  • 39 Jiang Q, Xu B, Jia J, Zhao A, Zhao Y.-R, Li Y.-Y, He N.-N, Guo C.-C. J. Org. Chem. 2014; 79: 7372
  • 40 Rokade BV, Prabhu KR. J. Org. Chem. 2014; 79: 8110
  • 41 Gao J, Lai J, Yuan G. RSC Adv. 2015; 5: 66723
  • 42 Singh R, Allam BK, Singh N, Kumari K, Singh SK, Singh KN. Org. Lett. 2015; 17: 2656
  • 43 Chen J, Mao J, Zheng Y, Liu D, Rong G, Yan H, Zhang C, Shi D. Tetrahedron 2015; 71: 5059
  • 44 Katrun P, Hlekhlai S, Meesin J, Pohmakotr M, Reutrakul V, Jaipetch T, Soorukram D, Kuhakarn C. Org. Biomol. Chem. 2015; 13: 4785
  • 45 Qian P, Bi M, Su J, Zha Z, Wang Z. J. Org. Chem. 2016; 81: 4876
  • 46 Li P, Wang G.-W. Org. Biomol. Chem. 2019; 17: 5578
  • 47 Wang J.-J, Yu W. Org. Lett. 2019; 21: 9236
  • 48 Zhu Y.-L, Jiang B, Hao W.-J, Wang A.-F, Qiu J.-K, Wei P, Wang D.-C, Li G, Tu S.-J. Chem. Commun. 2016; 52: 1907
  • 49 Huang M.-H, Zhu Y.-L, Hao W.-J, Wang A.-F, Wang D.-C, Liu F, Wei P, Tu S.-J, Jiang B. Adv. Synth. Catal. 2017; 359: 2229
  • 50 Li Y, Ma F, Li P, Miao T, Wang L. Adv. Synth. Catal. 2019; 361: 1606
  • 51 Wu W, Yi S, Huang W, Luo D, Jiang H. Org. Lett. 2017; 19: 2825
  • 52 Zhang J, Cheng S, Cai Z, Liu P, Sun P. J. Org. Chem. 2018; 83: 9344
  • 53 Wang L, Zhang M, Zhang Y, Liu Q, Zhao X, Li J.-S, Luo Z, Wei W. Chin. Chem. Lett. 2020; 31: 67
  • 54 Kobayashi M, Minato H, Ogi Y. Bull. Chem. Soc. Jpn. 1972; 45: 1224
  • 55 Huang L, Zhu C, Yi L, Yue H, Kancherla R, Rueping M. Angew. Chem. Int. Ed. 2020; 59: 457
  • 56 Zhao J, Li P, Li X, Xia C, Li F. Chem. Commun. 2016; 52: 3661
  • 57 Yang W.-C, Dai P, Luo K, Ji Y.-G, Wu L. Adv. Synth. Catal. 2017; 359: 2390
  • 58 Tang L, Yang Z, Chang X, Jiao J, Ma X, Rao W, Zhou Q, Zheng L. Org. Lett. 2018; 20: 6520
  • 59 Hu H, Chen X, Sun K, Wang J, Liu Y, Liu H, Yu B, Sun Y, Qu L, Zhao Y. Org. Chem. Front. 2018; 5: 2925
  • 60 Mei Y, Zhao L, Liu Q, Ruan S, Wang L, Li P. Green Chem. 2020; 22: 2270
  • 61 Kaur J, Shahin A, Barham JP. Org. Lett. 2021; 23: 2002
  • 62 Zhou J, Ren Q, Xu N, Wang C, Song S, Chen Z, Li J. Green Chem. 2021; 23: 5753
  • 63 Li G.-H, Han Q.-Q, Sun Y.-Y, Chen D.-M, Wang Z.-L, Xu X.-M, Yu X.-Y. Chin. Chem. Lett. 2020; 31: 3255
  • 64 Wu Y, Zhang Y, Jiang M, Dong X, Jalani HB, Li G, Lu H. Chem. Commun. 2019; 55: 6405
  • 65 Leyva E, Platz MS, Persy G, Wirz J. J. Am. Chem. Soc. 1986; 108: 3783
  • 66 Tsao M.-L, Gritsan N, James TR, Platz MS, Hrovat DA, Borden WT. J. Am. Chem. Soc. 2003; 125: 9343
  • 67 Poe R, Schnapp K, Young MJ. T, Grayzar J, Platz MS. J. Am. Chem. Soc. 1992; 114: 5054
  • 68 Mizuno K, Nakanishi K, Otsuji Y. Chem. Lett. 1988; 17: 1833
  • 69 Qvortrup K, Rankic DA, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 626
  • 70 Lipp B, Nauth AM, Opatz T. J. Org. Chem. 2016; 81: 6875
  • 71 Nauth AM, Lipp A, Lipp B, Opatz T. Eur. J. Org. Chem. 2017; 2099
  • 72 Studer A. Chem. Eur. J. 2001; 7: 1159
  • 73 Lipp B, Lipp A, Detert H, Opatz T. Org. Lett. 2017; 19: 2054
  • 74 Lipp B, Kammer LM, Kücükdisli M, Luque A, Kühlborn J, Pusch S, Matulevičiūtė G, Schollmeyer D, Šačkus A, Opatz T. Chem. Eur. J. 2019; 25: 8965
  • 75 Gualandi A, Mazzarella D, Ortega-Martínez A, Mengozzi L, Calcinelli F, Matteucci E, Monti F, Armaroli N, Sambri L, Cozzi PG. ACS Catal. 2017; 7: 5357
  • 76 Kammer LM, Krumb M, Spitzbarth B, Lipp B, Kühlborn J, Busold J, Mulina OM, Terentev AO, Opatz T. Org. Lett. 2020; 22: 3318
  • 77 Mochizuki T, Hayakawa S, Narasaka K. Bull. Chem. Soc. Jpn. 1996; 69: 2317
  • 78 Kim YJ, Choo MH, Kim DY. Tetrahedron Lett. 2018; 59: 3863
  • 79 Kang J.-C, Tu Y.-Q, Dong J.-W, Chen C, Zhou J, Ding T.-M, Zai J.-T, Chen Z.-M, Zhang S.-Y. Org. Lett. 2019; 21: 2536
  • 80 Kim YJ, Kim DY. Tetrahedron Lett. 2019; 60: 1287
  • 81 Park JW, Kim DY. Bull. Korean Chem. Soc. 2019; 40: 1244
  • 82 Wang H, Lu Q, Chiang C.-W, Luo Y, Zhou J, Wang G, Lei A. Angew. Chem. Int. Ed. 2017; 56: 595
  • 83 Pampana VK. K, Charpe VP, Sagadevan A, Das DK, Lin C.-C, Hwu JR, Hwang KC. Green Chem. 2021; 23: 3569
  • 84 Wei W, Cui H, Yang D, Yue H, He C, Zhang Y, Wang H. Green Chem. 2017; 19: 5608
  • 85 Rohokale RS, Tambe SD, Kshirsagar UA. Org. Biomol. Chem. 2018; 16: 536
  • 86 Zhang Y, Chen W, Jia X, Wang L, Li P. Chem. Commun. 2019; 55: 2785
  • 87 Li Y, Miao T, Li P, Wang L. Org. Lett. 2018; 20: 1735
  • 88 Xiao F, Chen H, Xie H, Chen S, Yang L, Deng G.-J. Org. Lett. 2014; 16: 50
  • 89 Katrun P, Mueangkaew C, Pohmakotr M, Reutrakul V, Jaipetch T, Soorukram D, Kuhakarn C. J. Org. Chem. 2014; 79: 1778
  • 90 Johnson TC, Elbert BL, Farley AJ. M, Gorman TW, Genicot C, Lallemand B, Pasau P, Flasz J, Castro JL, MacCoss M, Dixon DJ, Paton RS, Schofield CJ, Smith MD, Willis MC. Chem. Sci. 2018; 9: 629
  • 91 Xie L.-Y, Fang T.-G, Tan J.-X, Zhang B, Cao Z, Yang L.-H, He W.-M. Green Chem. 2019; 21: 3858
  • 92 Dong D.-Q, Li L.-X, Li G.-H, Deng Q, Wang Z.-L, Long S. Chin. J. Catal. 2019; 40: 1494
  • 93 Liu N.-W, Liang S, Margraf N, Shaaban S, Luciano V, Drost M, Manolikakes G. Eur. J. Org. Chem. 2018; 1208
  • 94 Liu N.-W, Hofman K, Herbert A, Manolikakes G. Org. Lett. 2018; 20: 760
  • 95 Chawla R, Yadav LD. S. Org. Biomol. Chem. 2019; 17: 4761
  • 96 Swarnkar S, Ansari MY, Kumar A. Org. Lett. 2021; 23: 1163
  • 97 Bibler JP, Wojcicki A. J. Am. Chem. Soc. 1964; 86: 5051
  • 98 Downs RL, Wojcicki A. Inorg. Chim. Acta 1978; 27: 91
  • 99 Hartman FA, Wojcicki A. J. Am. Chem. Soc. 1966; 88: 844
  • 100 Bibler JP, Wojcicki A. J. Am. Chem. Soc. 1966; 88: 4862
  • 101 Hartman FA, Pollick PJ, Downs RL, Wojcicki A. J. Am. Chem. Soc. 1967; 89: 2493
  • 102 Thomasson JE, Wojcicki A. J. Am. Chem. Soc. 1968; 90: 2709
  • 103 Chen LS, Su SR, Wojcicki A. Inorg. Chim. Acta 1978; 27: 79
  • 104 Ye S, Li X, Xie W, Wu J. Eur. J. Org. Chem. 2020; 1274
  • 105 Collman JP, Roper WR. J. Am. Chem. Soc. 1966; 88: 180
  • 106 Chatgilialoglu C, Lunazzi L, Ingold KU. J. Org. Chem. 1983; 48: 3588
  • 107 Sun P, Yang D, Wei W, Jiang M, Wang Z, Zhang L, Zhang H, Zhang Z, Wang Y, Wang H. Green Chem. 2017; 19: 4785
  • 108 Bogonda G, Patil DV, Kim HY, Oh K. Org. Lett. 2019; 21: 3774
  • 109 He J, Chen G, Zhang B, Li Y, Chen J.-R, Xiao W.-J, Liu F, Li C. Chem 2020; 6: 1149