Vaccine induced thrombotic thrombocytopenia: Insights from blood smear

Silke Zimmermann, Martin Federbusch, Berend Isermann, Shrey Kohli.

Affiliations below.

DOI: 10.1055/a-1681-7286

Conflict of Interest: The authors declare that they have no conflict of interest.

This study was supported by Stiftung für Pathobiochemie und Molekulare Diagnostik (http://dx.doi.org/10.13039/501100008799), Deutsche Forschungsgemeinschaft (http://dx.doi.org/10.13039/501100001659), IS 67/11-1,KO 5736/1-1,SFB854/B26

Abstract:
Vaccine-induced thrombotic thrombocytopenia (VITT) is a thrombotic complication mimicking heparin induced thrombocytopenia (HIT). This very rare but severe thrombotic complication occurs post vaccination against SARS-Cov-2. Diagnosis of VITT remains challenging, but a current consensus report suggests a 10-point guideline for early detection of VITT, which should be confirmed by PF-4 immunoassays. The latter is considered to be the most reliable diagnostic test. We observed platelet aggregates and increased platelet volume in patients with VITT in routine blood smear analyses. These routine blood analytic findings may – together with the clinical presentation – support and speed up the diagnosis of VITT, and may be of particular importance in low-income countries with limited access to PF-4 immunoassays.

Corresponding Author:
Silke Zimmermann, Universitätsklinikum Leipzig, Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics University Hospital Leipzig, Leipzig, Germany, zimmermannsilke7@gmail.com, silke.zimmermann@medizin.uni-leipzig.de

Affiliations:
Silke Zimmermann, Universitätsklinikum Leipzig, Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics University Hospital Leipzig, Leipzig, Germany
Martin Federbusch, Universitätsklinikum Leipzig, Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics University Hospital Leipzig, Leipzig, Germany
Berend Isermann, Universitätsklinikum Leipzig, Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics University Hospital Leipzig, Leipzig, Germany
Shrey Kohli, Universitätsklinikum Leipzig, Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics University Hospital Leipzig, Leipzig, Germany
Vaccine induced thrombotic thrombocytopenia: Insights from blood smear

Silke Zimmermann1*, Martin Federbusch1*, Berend Isermann1#, Shrey Kohli1#

1Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Germany.

* Contributed equally.
To whom correspondence should be addressed, contributed equally:

Shrey Kohli, PhD
Institute of Laboratory Medicine,
Clinical Chemistry and Molecular Diagnostics
University Hospital Leipzig, Leipzig University
Liebigstr. 27A
04103 Leipzig, Germany.

e-mail: shrey.kohli@medizin.uni-leipzig.de

Prof. Dr. med. Berend Isermann
Institute of Laboratory Medicine,
Clinical Chemistry and Molecular Diagnostics,
University Hospital Leipzig, Leipzig University
Liebigstr. 27A
04103 Leipzig, Germany.

e-mail: berend.isermann@medizin.uni-leipzig.de
Abstract

Vaccine-induced thrombotic thrombocytopenia (VITT) is a thrombotic complication mimicking heparin induced thrombocytopenia (HIT). This very rare but severe thrombotic complication occurs post vaccination against SARS-Cov-2. Diagnosis of VITT remains challenging, but a current consensus report suggests a 10-point guideline for early detection of VITT, which should be confirmed by PF-4 immunoassays. The latter is considered to be the most reliable diagnostic test. We observed platelet aggregates and increased platelet volume in patients with VITT in routine blood smear analyses. These routine blood analytic findings may – together with the clinical presentation – support and speed up the diagnosis of VITT, and may be of particular importance in low-income countries with limited access to PF-4 immunoassays.

Discussion

Two patients (patient 1: age-25; patient 2: age-28, female) were hospitalized on day 7 and 14, respectively, post vaccination (first dose, ChAdOx1nCov-19) with symptoms like nausea, dizziness and headache. Negative Covid-19 RT-PCR excluded SARS-Cov-2. Laboratory results showed platelet count of 75/nL (patient 1) and 76/nL (patient 2), whereas the D-dimer level was 30.65 mg/L and 34.62, respectively. Computer Tomography showed transversal sinus thrombosis.

Blood counts revealed thrombocytopenia in both patients. In routine blood smears aggregated (A-D; dotted arrows, platelet aggregates) and enlarged platelets (C-D, solid arrows; May-Grünwald Giemsa stain; scale bar 50 μm) were readily detectable upon hospitalization. Increased platelet volume was confirmed by impedance measurement (E,F; PLT histograms; LD=lower discriminator, UD=upper discriminator).

The patients received i.v. Argatroban and 2g/kg immunoglobulin on days 3 and 4 (patient 1) or on day 1 and 2 (patient 2) post hospitalization. Within 6-9 days, the platelet changes normalized (G-K).

These cases are suggestive of vaccine-induced immune thrombotic thrombocytopenia (VITT) (I). VITT is a rare but severe clotting and thrombocytopenia syndrome occurring post-vaccination, initially reported in individuals receiving the ChAdOx1nCov-19 AstraZeneca vaccine and later also with Johnson & Johnson vaccine. It is characterized by thrombosis, thrombocytopenia, and a positive PF4-heparin ELISA and platelet activation assays. In addition to vaccination, early diagnosis of patients at risk of disease worsening or complication thereof and anticipating medical care is an important part for the management of the Covid-19 pandemic (2). The consensus remains that the benefits of vaccination outweigh the risks. In order to reduce vaccine hesitancy, a tracking algorithm for vaccinated patients based on a 10-point guideline has been proposed (3), including anti-PF4 antibody testing and confirmation by PIPA testing. Our findings, made by routine blood smear analyses, may be a first and easily accessible diagnostic step aiding in the identification of patients with VITT and supporting its timely diagnosis. These insights may be particular helpful in low-resource countries where anti-PF4 antibody tests are not readily available.

A limitation of our finding is that it is not pathognomonic for VITT, but rather depicts a general immunogenic reaction, such as in heparin induced thrombocytopenia (HIT). Yet, in the context of a typical clinical presentation and a history of Covid-19 vaccination, these findings, reduced platelet count in combination with platelet aggregates and an enlarged platelet volume, which can be obtained from a routine blood test, support the diagnosis of VITT. Such findings warrant further diagnostic and clinical work-up.
Figure Legend:

May-Grünwald stained blood smear analysis (A-J, microscopic analysis) from two patients with reduced platelet counts (K) suggestive of VITT. Enlarged platelets (C-D, solid arrows) were detectable and their reactive volume change was observed by impedance technology; E-F, platelet histograms.

Conflict of interest

The authors declare that there is no conflict of interest.

Funding

This work was supported by the funds from the DFG project number KO 5736/1-1 to S.K. and IS 67/11-1 and SFB854/B26 to B.I. and of the funds from the Stiftung für Pathobiochemie und Molekulare Diagnostik to S.Z.

References

Vaccine induced thrombotic thrombocytopenia: Insights from blood smear
Silke Zimmermann, Martin Federbusch, Berend Isermann, Shrey Kohli
Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany.

(A) Patient-1
(B) Patient-2

(C) (D) (G) (I)

(E) PLT-histogram
(F) PLT-histogram

(Patient-1) (Patient-2)

Platelet count/mL

Days after Admission