Synthesis 2022; 54(06): 1643-1651
DOI: 10.1055/a-1695-0820
paper

Synthesis of Rigid Rod, Trigonal, and Tetrahedral Nucleobase-Terminated Molecules

Xiao-Yang Jin
a   Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. of China
b   University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
,
Chuan-Shuo Wu
a   Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. of China
b   University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
,
An-Di Liu
a   Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. of China
b   University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
,
Li Liu
a   Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. of China
b   University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
,
Liang Cheng
a   Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. of China
b   University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
› Author Affiliations
This work was supported by the National Key R & D Program of China (2017YFA0208100 and 2020YFA0707901), National Natural Science Foundation of China (22022704, 91853124, 21977097, and 21778057), and Chinese Academy of Sciences.


Dedicated to Professor Dong Wang on the occasion of his 80th birthday.

Abstract

An efficient fragment splicing method for the construction of multiple nucleobase-terminated monomers has been developed. Conformationally fixed rod, trigonal planar and tetrahedral thymine and adenine structures were generated in moderate to good yields, which will serve as inspiring examples for exploration of nucleobases as natural hydrogen-bond components in supramolecular chemistry.

Supporting Information



Publication History

Received: 12 October 2021

Accepted after revision: 11 November 2021

Accepted Manuscript online:
11 November 2021

Article published online:
21 December 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Leininger S, Olenyuk B, Stang PJ. Chem. Rev. 2000; 100: 853
    • 1b Hof F, Craig SL, Nuckolls C, Rebek J. Angew. Chem. Int. Ed. 2002; 41: 1488
    • 1c Chakrabarty R, Mukherjee PS, Stang PJ. Chem. Rev. 2011; 111: 6810
    • 1d Chakraborty S, Newkome GR. Chem. Soc. Rev. 2018; 47: 3991
    • 2a Etter MC. Acc. Chem. Res. 1990; 23: 120
    • 2b Simard M, Su D, Wuest JD. J. Am. Chem. Soc. 1991; 113: 4696
    • 2c Luo J, Wang J.-W, Zhang J.-H, Laia S, Zhong D.-C. CrystEngComm 2018; 20: 5884
    • 2d Hisaki I, Xin C, Takahashi K, Nakamura T. Angew. Chem. Int. Ed. 2019; 58: 11160
    • 2e Yang JY, Wang JK, Hou BH, Huang X, Wang T, Bao Y, Hao HX. Chem. Eng. J. 2020; 399: 125873
    • 3a Chen T.-H, Popov I, Kaveevivitchai W, Chuang Y.-C, Chen Y.-S, Daugulis O, Jacobson AJ, Miljanić O. Š. Nat. Commun. 2014; 5: 5131
    • 3b Aparicio F, Mayoral MJ, Montoro-García C, González-Rodríguez D. Chem. Commun. 2019; 55: 7277
    • 3c Li PH, Ryder MR, Stoddart JF. Acc. Mater. Res. 2020; 1: 77
    • 3d Wang B, Lin R.-B, Zhang ZJ, Xiang SC, Chen BL. J. Am. Chem. Soc. 2020; 142: 14399
    • 3e Aitchison CM, Kane CM, McMahon DP, Spackman PR, Pulido A, Wang XY, Wilbraham L, Chen LJ, Clowes R, Zwijnenburg MA, Sprick RS, Little MA, Day GM, Cooper AI. J. Mater. Chem. A 2020; 8: 7158
    • 4a Bassanetti I, Bracco S, Comotti A, Negroni M, Bezuidenhout C, Canossa S, Mazzeo PP, Marchió L, Sozzani P. J. Mater. Chem. A 2018; 6: 14231
    • 4b Yin Q, Zhao P, Sa R.-J, Chen G.-C, Lv J, Liu T.-F, Cao R. Angew. Chem. Int. Ed. 2018; 57: 7691
    • 4c Hisaki I, Suzuki Y, Gomez E, Ji Q, Tohnai N, Nakamura T, Douhal A. J. Am. Chem. Soc. 2019; 141: 2111
    • 4d Zhang X, Li LB, Wang J.-X, Wen H.-M, Krishna R, Wu H, Zhou W, Chen Z.-N, Li B, Qian GD, Chen BL. J. Am. Chem. Soc. 2020; 142: 633
    • 4e Wang B, He R, Xie L.-H, Lin Z.-J, Zhang X, Wang J, Huang HL, Zhang ZJ, Schanze KS, Zhang J, Xiang SC, Chen BL. J. Am. Chem. Soc. 2020; 142: 12478
    • 5a Simard M, Su D, Wuest JD. J. Am. Chem. Soc. 1991; 113: 4696
    • 5b Wang X, Simard M, Wuest JD. J. Am. Chem. Soc. 1994; 116: 12119
    • 5c Malek N, Maris T, Simard M, Wuest JD. J. Am. Chem. Soc. 2005; 127: 5910
    • 5d Maly KE, Gagnon E, Maris T, Wuest JD. J. Am. Chem. Soc. 2007; 129: 4306
    • 6a Sivakovaa S, Rowan SJ. Chem. Soc. Rev. 2005; 34: 9
    • 6b del Prado A, González-Rodríguez D, Wu Y.-L. ChemistryOpen 2020; 9: 409
    • 6c Serrano-Molina D, de Juan A, González-Rodríguez D. Chem. Rec. 2021; 21: 480
    • 7a Yoosaf K, Llanes-Pallas A, Marangoni T, Belbakra A, Marega R, Botek E, Champagne B, Bonifazi D, Armaroli N. Chem. Eur. J. 2011; 17: 3262
    • 7b Varlas S, Hua Z, Jones JR, Thomas M, Foster JC, O’Reilly RK. Macromolecules 2020; 53: 9747
    • 7c Mishra UK, Sanghvi YS, Egli M, Ramesh NG. J. Org. Chem. 2021; 86: 367
    • 7d Martín-Arroyo M, Castells-Gil J, Bilbao N, Almora-Barrios N, Martí-Gastaldo C, González-Rodríguez D. Chem. Commun. 2021; 57: 1659
    • 8a Sessler JL, Lawrencea CM, Jayawickramarajah J. Chem. Soc. Rev. 2007; 36: 314
    • 8b Bang E.-K, Won J, Moon D, Lee JY, Kim BH. Chem. Asian J. 2011; 6: 2048
    • 8c Pu F, Ren JS, Qu XG. Chem. Soc. Rev. 2018; 47: 1285
    • 8d Cheng C.-C, Yang X.-J, Fan W.-L, Lee A.-W, Lai J.-Y. Biomacromolecules 2020; 21: 3857
    • 9a Pullman B, Saran A. Prog. Nucleic Acid Res. Mol. Biol. 1976; 18: 215
    • 9b Davies DB. Prog. Nucl. Magn. Reson. Spectrosc. 1978; 12: 135
    • 9c Mishnev AF, Bleidelis YY. J. Struct. Chem. 1984; 25: 773
    • 9d Mathé C, Périgaud C. Eur. J. Org. Chem. 2008; 1489
    • 9e Plietzsch O, Schilling CI, Tolev M, Nieger M, Richert C, Muller T, Bräse S. Org. Biomol. Chem. 2009; 7: 4734
    • 9f Shin D, Tor Y. J. Am. Chem. Soc. 2011; 133: 6926
    • 9g Pan M.-Y, Wu X.-H, Luo D.-P, Huang W, He Y. Acta Crystallogr., Ser. C 2011; 67: o175
    • 9h Pop L, Golban ML, Hădade ND, Socaci C, Grosu I. Synthesis 2015; 47: 2799
    • 10a Asadi A, Patrick BO, Perrin DM. J. Org. Chem. 2007; 72: 466
    • 10b Jacobsen MF, Andersen CS, Knudsen MM, Gothelf KV. Org. Lett. 2007; 9: 2851
    • 10c Hamblin J, Argent SP, Blake AJ, Wilsona C, Champness NR. CrystEngComm 2008; 10: 1782
    • 10d Schindler D, Eißmanna F, Weber E. Org. Biomol. Chem. 2009; 7: 3549
    • 10e Pathak R, Marx A. Chem. Asian J. 2011; 6: 1450
    • 10f Shen C, Cramer JR, Jacobsen MF, Liu L, Zhang S, Dong MD, Gothelfabc KV, Besenbacher F. Chem. Commun. 2013; 49: 508
    • 10g Golban ML, Paşcanu V, Hădade ND, Pop L, Socaci C, Grosu I. Synthesis 2014; 46: 1229
    • 10h Qi L, Gundersen L.-L, Görbitz CH. CrystEngComm 2018; 20: 1179
    • 10i Tufenkjian E, Kahlfuss C, Kyritsakas N, Hosseini MW, Bulach V. Eur. J. Org. Chem. 2021; 483
    • 11a Xie L.-J, Wang R.-L, Wang D, Liu L, Cheng L. Chem. Commun. 2017; 53: 10734
    • 11b Xie L.-J, Yang X.-T, Wang R.-L, Cheng H.-P, Li Z.-Y, Liu L, Mao LQ, Wang M, Cheng L. Angew. Chem. Int. Ed. 2019; 58: 5028
    • 11c Jin X.-Y, Wang R.-L, Xie L -J, Kong D.-L, Liu L, Cheng L. Adv. Synth. Catal. 2019; 361: 4685
    • 11d Li X.-D, Gao Y.-T, Sun Y.-J, Jin X.-Y, Wang D, Liu L, Cheng L. Org. Lett. 2019; 21: 6643
    • 11e Wang R. -L, Jin X.-Y, Kong D.-L, Chen Z.-G, Liu J, Liu L, Cheng L. Adv. Synth. Catal. 2019; 361: 5406
    • 11f Sun Y.-J, Liu L, Cheng L. Chem. Commun. 2020; 56: 6484
    • 11g Lan L, Sun Y.-J, Jin X.-Y, Xie L.-J, Liu L, Cheng L. Angew. Chem. Int. Ed. 2021; 60: 18116
  • 12 Aguilar-Granda A, García-González MC, Pérez-Estrada S, Kozina A, Rodríguez-Molina B. J. Phys. Chem. C 2018; 122: 27093
  • 13 Hattori Y, Asano T, Kirihata M, Yamaguchi Y, Wakamiya T. Tetrahedron Lett. 2008; 49: 4977
  • 14 Racine S, de Nanteuil F, Serrano E, Waser J. Angew. Chem. Int. Ed. 2014; 53: 8484
  • 15 Jacobsen MF, Knudsen MM, Gothelf KV. J. Org. Chem. 2006; 71: 9183
  • 16 Dey S, Garner P. J. Org. Chem. 2000; 65: 7697
    • 17a Hisaki I, Nakagawa S, Tohnai N, Miyata M. Angew. Chem. Int. Ed. 2015; 54: 3008
    • 17b Hisaki I, Nakagawa S, Ikenaka N, Imamura Y, Katouda M, Tashiro M, Tsuchida H, Ogoshi T, Sato H, Tohnai N, Miyata M. J. Am. Chem. Soc. 2016; 138: 6617
  • 18 Yoosaf K, Llanes-Pallas A, Marangoni T, Belbakra A, Marega R, Botek E, Champagne B, Bonifazi D, Armaroli N. Chem. Eur. J. 2011; 17: 3262
  • 19 Muller T, Bräse S. RSC Adv. 2014; 4: 6886
  • 20 Trunk M, Herrmann A, Bildirir H, Yassin A, Schmidt J, Thomas A. Chem. Eur. J. 2016; 22: 7179
  • 21 Mongin O, Gossauer A. Tetrahedron 1997; 53: 6835
  • 22 Xie L.-H, Suh MP. Chem. Eur. J. 2013; 19: 11590
  • 23 Valera S, Taylor JE, Daniels DS. B, Dawson DM, Arachchige KS. A, Ashbrook SE, Slawin AM. Z, Bode BE. J. Org. Chem. 2014; 79: 8313
  • 24 CCDC 2109587 (19) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
  • 25 Erb W, Hellal A, Albini M, Rouden J, Blanchet J. Chem. Eur. J. 2014; 20: 6608