A Chiral Sulfoxide-Based C–H Acid

Denis Höflera, Karl Kaupmeesb, Ivo Leitob and Benjamin List*a

a Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
b University of Tartu, Institute of Chemistry, Ravila 14a, 50411 Tartu, Estonia

Published as part of the Editorial Board Cluster

Corresponding Author
Benjamin List
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
Mail list@kofo.mpg.de

Received: 17.09.2021
Accepted after revision: 04.11.2021
Published online: 04.11.2021
DOI: 10.1055/a-1695-4516; Art ID: st-2021-u0339-c

Abstract
We report the design and synthesis of a strong, chiral, enantiopure sulfoxide-based C–H acid. Single-crystal X-ray analysis confirms the proposed structure and its absolute configuration. The new motif shows a high acidity and activity in Brønsted and Lewis acid catalyzed transformations. So far, only little to no enantioselectivities were achieved.

Key words
sulfoxide C–H acids, stereogenic sulfur, triflyl groups, strong acids, noncoordinating anions, Brønsted acids

Chiral binaphthyl-derived acids have shown great success in asymmetric Lewis and Brønsted acid catalysis,1 especially confined variants.2 However, their catalytic activity is inherently limited by the electron-rich binaphthyl system, which also limits their acidity and catalytic reactivity. With both enantiomers readily available, chiral sulfur-stereogenic sulfoxides are attractive ligands in transition-metal catalysis.3 In organocatalysis, a stereogenic sulfur has been either a contributing factor or exclusively responsible for high enantioselectivities when using weakly acidic chiral urea- or thiourea-derived catalysts.3,4 We envisioned a new, tris(triflyl)methane (2)-inspired motif with the acidic proton very close to the stereogenic sulfur atom, which we hypothesized could lead to efficient asymmetric induction. These considerations led to the design of 1, expected to be a very strong C–H acid, with two triflyl (SO2CF3) groups6 and one chiral sulfoxide moiety (Scheme 1A). Indeed, a synthesis was developed, from commercially available iodide 3.

Scheme 1 Design (A), synthesis (B), and application (C) of the chiral, enantiopure sulfoxide C–H acid. TMP = 2,2,6,6-tetramethylpiperidine.
which was converted into a diastereomeric mixture of two oxazolidinones 6 by following reported procedures.5 The major diastereomer (6a) was separated by flash chromatography and converted into the desired enantiopure sulfoxide acid 1 by treatment with bis(triflyl)methane in the presence of a strong base followed by H2SO4 acidification.8 With the desired C–H acid 1 in hand, we were able to assign its absolute configuration by X-ray single-crystal structure analysis of its hydroxonium hydrate (see Supporting Information).9

Further, an experimental pK_a value of –12.5 ± 0.5 (in 1,2-dichloroethane, relative to picric acid) was determined of this size is expected to be essentially the same.10 This acidity corresponds to a pK_a of around 0 in acetonitrile.11 Therefore, to the best of our knowledge, sulfoxide 1 can be considered to be the strongest enantiopure Brønsted acid that has been prepared so far. We applied acid 1 as a catalyst in a variety of different reactions including two Mukaiyama aldolizations and a Hosomi–Sakurai allylation (Scheme 1C). Although the catalytic activity was promising, little to no enantioselectivity was observed in all cases. In the future, further modifications of this easily accessible transition-metal catalysis.

Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-1695-4516.

References and Notes
(8) 1-{[Bis(triflyl)methyl]sulfinyl}nonafluorobutane (1)
A Schlenk flask was charged with bis(triflyl)methane (0.46 g, 1.6 mmol, 1.0 equiv) and THF (3.5 mL) to give a colorless clear solution that was cooled to –78 °C. A 1.2 M solution of TMP:MgCl-LiCl in THF (3.1 mL, 3.8 mmol, 2.3 equiv) was added dropwise, followed by the diastereomerically pure sulfinyl oxazolidinone 6a (4.3 g, 14 mmol, 1.0 equiv; dr >99:1) in THF (3.5 mL). The mixture was allowed to reach RT overnight. All volatiles were then removed under reduced pressure to give an orange solid that was dissolved in CH2Cl2 (30 mL) and washed with sat. aq. NaHCO3 (3 × 10 mL). The pooled aqueous phases were extracted with CH2Cl2 (2 × 10 mL). The pooled organic phases were washed with concd aq HCl (3 × 30 mL), dried (MgSO4), filtered, and concentrated under reduced pressure. The resulting yellowish viscous oil was dissolved in CHCl3 (30 mL), washed with concd aq HCI (3 × 30 mL), dried (MgSO4), filtered, and concentrated under reduced pressure until 7 mL of liquid remained. This solution was stored at –29 °C overnight, which led to the formation of a precipitate. The mother liquor was removed to give a colorless solid; yield: 0.51 g (57%, 0.93 mmol).

Acknowledgment
We also thank Petra Wedemann, Diana X. Sun, Jonas Aronow, Lucas Schreyer, and Hyejin Kim for experimental assistance, as well as the members of our analytical departments for their excellent service, especially Dr. Christophe Farès, Dr. Richard Goddard, and Nils Nöthling. We acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision of experimental facilities; parts of this research were carried out at PETRA III, and we would like to thank Sofiane Saouane for excellent assistance in using the P11-High-Throughput Macromolecular Crystallography Beamline.

Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-1695-4516.

References and Notes
(8) 1-{[Bis(triflyl)methyl]sulfinyl}nonafluorobutane (1)
A Schlenk flask was charged with bis(triflyl)methane (0.46 g, 1.6 mmol, 1.0 equiv) and THF (3.5 mL) to give a colorless clear solution that was cooled to –78 °C. A 1.2 M solution of TMP:MgCl-LiCl in THF (3.1 mL, 3.8 mmol, 2.3 equiv) was added dropwise, followed by the diastereomerically pure sulfinyl oxazolidinone 6a (4.3 g, 14 mmol, 1.0 equiv; dr >99:1) in THF (3.5 mL). The mixture was allowed to reach RT overnight. All volatiles were then removed under reduced pressure to give an orange solid that was dissolved in CH2Cl2 (30 mL) and washed with sat. aq. NaHCO3 (3 × 10 mL). The pooled aqueous phases were extracted with CH2Cl2 (2 × 10 mL). The pooled organic phases were washed with concd aq HCl (3 × 30 mL), dried (MgSO4), filtered, and concentrated under reduced pressure. The resulting yellowish viscous oil was dissolved in CHCl3 (30 mL), washed with concd aq HCI (3 × 30 mL), stirred over dried BaCl2 for 80 min, and filtered. All volatiles were removed under reduced pressure until 7 mL of liquid remained. This solution was stored at –29 °C overnight, which led to the formation of a precipitate. The mother liquor was removed to give a colorless solid; yield: 0.51 g (57%, 0.93 mmol).

Acknowledgment
We also thank Petra Wedemann, Diana X. Sun, Jonas Aronow, Lucas Schreyer, and Hyejin Kim for experimental assistance, as well as the members of our analytical departments for their excellent service, especially Dr. Christophe Farès, Dr. Richard Goddard, and Nils Nöthling. We acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision of experimental facilities; parts of this research were carried out at PETRA III, and we would like to thank Sofiane Saouane for excellent assistance in using the P11-High-Throughput Macromolecular Crystallography Beamline.
HRMS (ESI–): m/z [M −H] calcd for C₇F₁₅O₅S₃: 544.8674; found: 544.8674. Anal.: Calcd for C₇HF₁₅O₅S₃ [546.24 g/mol]: C, 15.39; H, 0.18; F, 52.17; S, 17.61; Found: C, 15.42; H, 0.17; F, 52.14; S, 17.60.

(9) CCDC 2106642 and 2106643 contain the supplementary crystallographic data for 1 hydroxonium hydrate and 6a. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures