Kinder- und Jugendmedizin 2022; 22(01): 32-40
DOI: 10.1055/a-1706-4417
Schwerpunkt

Die Rolle von genetischer Prädisposition bei Krebserkrankungen im Kindesalter

The role of genetic predisposition in pediatric cancers
Triantafyllia Brozou
1   Klinik für Kinder-Onkologie, -Hämatologie und klinische Immunologie, Medizinische Fakultät der Heinrich-Heine-Universität Düsseldorf
,
Rabea Wagener
1   Klinik für Kinder-Onkologie, -Hämatologie und klinische Immunologie, Medizinische Fakultät der Heinrich-Heine-Universität Düsseldorf
› Author Affiliations

ZUSAMMENFASSUNG

Obwohl maligne Erkrankungen im Kindesalter seltener als bei Erwachsenen auftreten, sind sie die zweithäufigste Todesursache (nach tödlichen Unfällen) bei Kindern bis zum 15. Lebensjahr. Laut dem letzten Bericht des Deutschen Kinderkrebsregisters wurden im Jahr 2018 insgesamt 2255 Kinder mit einer bösartigen Tumorerkrankung diagnostiziert. Basierend auf diesen Zahlen entwickelt eines von 337 Neugeborenen bis zum 18. Lebensjahr eine maligne Erkrankung. Verschiedene Risikofaktoren, wie Ernährung, Tabak- und Alkoholkonsum, Alter, Exposition am Arbeitsplatz sowie chronische Infektionen, die die Tumorentstehung bei Erwachsenen begünstigen, sind im Kindesalter nicht vorhanden. Vielmehr spielen vererbte oder de novo erworbene Keimbahnmutationen im Sinne einer genetischen Krebsprädisposition bei einem signifikanten Prozentsatz der Kinder eine wichtige Rolle. Diese genetische Krebsprädisposition kann klinisch unauffällig sein oder mit anderen phänotypischen Auffälligkeiten als Teil einer syndromalen Erkrankung vorkommen. Die frühzeitige Erkennung von Kindern mit genetischem Tumorprädispositionssyndrom ist für die Therapieplanung und die Nachsorge der betroffenen Patient*innen von großer Bedeutung.

ABSTRACT

Malignancies in children are less common than in adults, but still affect a relevant proportion of children and are the second most common cause of death after accidents in children between 1–15 years of age. According to the latest report of the German Childhood Cancer Registry, 2255 children were diagnosed with a malignant disease in 2018. Consequently, it is calculated that on average one in 337 newborns will develop a malignancy by the age of 18 years. Several risk factors that favor carcinogenesis in adulthood as diet, tobacco and alcohol consumption, age, occupational exposures and chronic infections are negligible in childhood cancer. Instead, recent studies have shown, that especially in children and adolescents inherited or de novo germline mutations play a relevant role in predisposition for cancerogenesis. This genetic predisposition to cancer may manifest clinically as “silent”, or, more often, it may be associated with other abnormalities as part of a syndromic disease. The early clinical identification of children with tumor predisposition syndrome is of paramount importance for treatment decision and long-term follow-up.



Publication History

Received: 22 July 2021

Accepted: 29 July 2021

Article published online:
25 February 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG,
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Kratz CP, Achatz MI, Brugieres L. et al Cancer Screening Recommendations for Individuals with Li-Fraumeni Syndrome. Clin Cancer Res 2017; 23 (11) e38-e45
  • 2 Frebourg T, Bajalica Lagercrantz S, Oliveira C. et al Guidelines for the Li-Fraumeni and heritable TP53-related cancer syndromes. Eur J Hum Genet 2020; 28 (10) 1379-1386
  • 3 Ripperger T, Bielack SS, Borkhardt A. et al Childhood cancer predisposition syndromes – A concise review and recommendations by the Cancer Predisposition Working Group of the Society for Pediatric Oncology and Hematology. Am J Med Genet A 2017; 173 (04) 1017-1037
  • 4 Zhang J, Walsh MF, Wu G. et al Germline Mutations in Predisposition Genes in Pediatric Cancer. N Engl J Med 2015; 373 (24) 2336-2346
  • 5 Brozou T, Taeubner J, Velleuer E. et al Genetic predisposition in children with cancer – affected families’ acceptance of Trio-WES. Eur J Pediatr 2018; 177 (01) 53-60
  • 6 Taeubner J, Wieczorek D, Yasin L. et al Penetrance and Expressivity in Inherited Cancer Predisposing Syndromes. Trends Cancer 2018; 04 (11) 718-728
  • 7 Wagener R, Taeubner J, Walter C. et al Comprehensive germline-genomic and clinical profiling in 160 unselected children and adolescents with cancer. Eur J Hum Genet 2021; 29 (08) 1301-1311
  • 8 Diets IJ, Waanders E, Ligtenberg MJ. et al High Yield of Pathogenic Germline Mutations Causative or Likely Causative of the Cancer Phenotype in Selected Children with Cancer. Clin Cancer Res 2018; 24 (07) 1594-1603
  • 9 Grobner SN, Worst BC, Weischenfeldt J. et al The landscape of genomic alterations across childhood cancers. Nature 2018; 555 7696 321-327
  • 10 Byrjalsen A, Hansen TVO, Stoltze UK. et al Nationwide germline whole genome sequencing of 198 consecutive pediatric cancer patients reveals a high incidence of cancer prone syndromes. PLoS Genet 2020; 16 (12) e1009231
  • 11 Holmfeldt L, Wei L, Diaz-Flores E. et al The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet 2013; 45 (03) 242-252
  • 12 Comeaux EQ, Mullighan CG. TP53 Mutations in Hypodiploid Acute Lymphoblastic Leukemia. Cold Spring Harb Perspect Med 2017; 07 (03) a026286
  • 13 Auer F, Ruschendorf F, Gombert M. et al Inherited susceptibility to pre B-ALL caused by germline transmission of PAX5 c.547 G > A. Leukemia 2014; 28 (05) 1136-1138
  • 14 Rampersaud E, Ziegler DS, Iacobucci I. et al Germline deletion of ETV6 in familial acute lymphoblastic leukemia. Blood Adv 2019; 03 (07) 1039-1046
  • 15 Shah S, Schrader KA, Waanders E. et al A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia. Nat Genet 2013; 45 (10) 1226-1231
  • 16 Rio-Machin A, Vulliamy T, Hug N. et al The complex genetic landscape of familial MDS and AML reveals pathogenic germline variants. Nat Commun 2020; 11 (01) 1044
  • 17 Gocho Y, Yang JJ. Genetic defects in hematopoietic transcription factors and predisposition to acute lymphoblastic leukemia. Blood 2019; 134 (10) 793-797
  • 18 Hauer J, Fischer U, Borkhardt A. Towards prevention of childhood ALL by early-life immune training. Blood 2021; 138 (16) 1412-1428
  • 19 Di Paola J, Porter CC. ETV6-related thrombocytopenia and leukemia predisposition. Blood 2019; 134 (08) 663-667
  • 20 Borst S, Nations CC, Klein JG. et al Study of inherited thrombocytopenia resulting from mutations in ETV6 or RUNX1 using a human pluripotent stem cell model. Stem Cell Reports 2021; 16 (06) 1458-1467
  • 21 Topka S, Vijai J, Walsh MF. et al Germline ETV6 Mutations Confer Susceptibility to Acute Lymphoblastic Leukemia and Thrombocytopenia. PLoS Genet 2015; 11 (06) e1005262
  • 22 Mirabello L, Zhu B, Koster R. et al Frequency of Pathogenic Germline Variants in Cancer-Susceptibility Genes in Patients With Osteosarcoma. JAMA Oncol 2020; 06 (05) 724-734
  • 23 Waszak SM, Northcott PA, Buchhalter I. et al Spectrum and prevalence of genetic predisposition in medulloblastoma: a retrospective genetic study and prospective validation in a clinical trial cohort. Lancet Oncol 2018; 19 (06) 785-798
  • 24 Muskens IS, Zhang C, de Smith AJ. et al Germline genetic landscape of pediatric central nervous system tumors. Neuro Oncol 2019; 21 (11) 1376-388
  • 25 Muskens IS, de Smith AJ, Zhang C. et al Germline cancer predisposition variants and pediatric glioma: a population-based study in California. Neuro Oncol 2020; 22 (06) 864-874
  • 26 Tabori U, Shlien A, Baskin B. et al TP53 alterations determine clinical subgroups and survival of patients with choroid plexus tumors. J Clin Oncol 2010; 28 (12) 1995-2001
  • 27 Ripperger T, Evans DG, Malkin D, Kratz CP. Choose and stay on one out of two paths: distinction between clinical versus research genetic testing to identify cancer predisposition syndromes among patients with cancer. Fam Cancer 2021; 20 (04) 289-291
  • 28 Schwermer M, Behnert A, Dorgeloh B. et al Effective identification of cancer predisposition syndromes in children with cancer employing a questionnaire. Fam Cancer 2021; 20 (04) 257-262
  • 29 Villani A, Shore A, Wasserman JD. et al Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: 11 year follow-up of a prospective observational study. Lancet Oncol 2016; 17 (09) 1295-1305
  • 30 Escherich C, Schaper J, Beygo J. et al Bauchumfangsvermehrung und Hemihypertrophie. Monatsschr Kinderheilkd 2021; 169 (02) 99-102
  • 31 Wimmer K, Kratz CP, Vasen HFA. et al Diagnostic criteria for constitutional mismatch repair deficiency syndrome: suggestions of the European consortium ‘Care for CMMRD’ (C4CMMRD). Journal of Medical Genetics 2014; 51 (06) 355-365
  • 32 Jongmans MC, Loeffen JL, Waanders E. et al Recognition of genetic predisposition in pediatric cancer patients: An easy-to-use selection tool. Eur J Med Genet 2016; 59 (03) 116-125
  • 33 Postema FAM, Hopman SMJ, Aalfs CM. et al Childhood tumours with a high probability of being part of a tumour predisposition syndrome; reason for referral for genetic consultation. Eur J Cancer 2017; 80: 48-54
  • 34 van Engelen K, Barrera M, Wasserman JD B. et al Tumor surveillance for children and adolescents with cancer predisposition syndromes: The psychosocial impact reported by adolescents and caregivers. Pediatr Blood Cancer 2021: e29021
  • 35 Miller DT, Lee K, Gordon AS. et al Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2021 update: a policy statement of the American College of Medical Genetics and Genomics (ACMG). Genetics in Medicine 2021; 23 (08) 1391-1398