Successful treatment of an iatrogenic biliary stricture using holmium laser "recanalization" and multistenting technique

A 55-year-old woman admitted for jaundice 2 months after cholecystectomy underwent magnetic resonance imaging, which showed a common bile duct (CBD) stricture. Cholangiography during endoscopic retrograde cholangiopancreatography (▶ Fig. 1) confirmed a tight stricture of the proximal CBD and lack of visualization of the intrahepatic bile ducts (IHBD). At cholangioscopy using SpyGlass DS (Boston Scientific), a complete stricture of the proximal CBD was observed with a metallic clip visible inside the CBD (▶ Fig. 2). The on-call interventional radiologist performed a percutaneous transhepatic biliary drainage (PTBD) procedure in order to try a rendezvous approach. Percutaneous contrast medium injection confirmed dilated IHBD with complete absence of the proximal CBD lumen for a length of at least 5 mm. Multiple attempts to pass a guidewire through the stricture, both percutaneously and endoscopically, failed. We decide to use holmium:YAG laser to cut through the biliary wall (▶ Video 1) under cholangioscopic view by radiologically following the axis of SpyGlass and the presumed anatomic direction of the CBD until "recanalization" of the stricture was achieved.}

▶ Video 1 The holmium:YAG laser fiber was oriented toward the biliary wall by radiologically following with SpyGlass the presumed anatomic direction of the CBD until "recanalization" of the stricture was achieved.

▶ Fig. 1 Cholangiography during endoscopic retrograde cholangiopancreatography showed a tight stricture of the proximal common bile duct (CBD; asterisk) near the projection of the surgical clips, with no passage of contrast medium into the intrahepatic bile ducts.

▶ Fig. 2 Cholangioscopy using SpyGlass DS revealed a complete stricture of the proximal CBD with the tip of a metallic clip (asterisk) clearly visible inside the CBD.

▶ Fig. 3 After laser treatment, cholangiography confirmed "recanalization" of the CBD stricture, with passage of contrast medium (arrow) through the stricture into the distal CBD, without spreading outside the CBD.

SpyGlass DS (Boston Scientific), a complete stricture of the proximal CBD was observed with a metallic clip visible inside the CBD (▶ Fig. 2). The on-call interventional radiologist performed a percutaneous transhepatic biliary drainage (PTBD) procedure in order to try a rendezvous approach. Percutaneous contrast medium injection confirmed dilated IHBD with complete absence of the proximal CBD lumen for a length of at least 5 mm. Multiple attempts to pass a guidewire through the stricture, both percutaneously and endoscopically, failed. We decide to use holmium:YAG laser to cut through the biliary wall (▶ Video 1) under cholangioscopic view by radiologically following the axis of SpyGlass and the presumed anatomic direction of the CBD until we were able to pass a guidewire into the IHBD. Cholangiography confirmed the passage of contrast medium through the "recanalized" CBD stricture (▶ Fig. 3). After hydropneumatic balloon dilation of the stricture up to 8 mm, the choledochoscope was able to pass through the stricture (▶ Fig. 4) over the guidewire into the IHBD, directly visualizing the PTBD, which was finally removed. Lastly, four plastic biliary stents were placed bilaterally across the stricture. After an intermediate exchange and addi-
tion of two more stents, cholangiography 6 months later showed complete resolution of the stricture (Fig. 5).

Endoscopic therapy is considered the first-line treatment for benign biliary stricture following cholecystectomy [1–3]. A multidisciplinary approach in collaboration with an interventional radiologist was useful [4] in managing this case of complete iatrogenic proximal CBD stricture, enabling the operator to be guided during the application of the holmium laser technique. In this way, “recanalization” of the CBD lumen was achieved, thus permitting the usual multistenting treatment to be carried out.

Competing interests

Dr. Roberto Di Mitri is consultant to Boston Scientific. The other authors have no conflicts of interest and disclosed no financial relationships relevant to this publication.

The authors

Roberto Di Mitri1, Daniela Scimeca1, Michele Amata1, Filippo Mocciano1, Ambra Bonaccorso1, Elisabetta Contet1, Mario Vallone2

1 Gastroenterology and Endoscopy Unit, ARNAS Civico – Di Cristina – Benfratelli Hospital, Palermo, Italy
2 Interventional Radiology Unit, ARNAS Civico – Di Cristina – Benfratelli Hospital, Palermo, Italy

Corresponding author

Daniela Scimeca, MD, PhD
Gastroenterology and Endoscopy Unit, ARNAS Civico – Di Cristina – Benfratelli Hospital, Piazza N. Leotta n. 4, 90100 Palermo, Italy
d.scimeca80@gmail.com

References


Acknowledgement

Thanks to Dr. Peter Dennis Bolivar Rosa for his support and help in editing this paper.

Endoscopy_UCTN_Code_TTT_1AR_2AG

Bibliography

Endoscopy 2022; 54: E608–E609
DOI 10.1055/a-1711-3652
ISSN 0013-726X
published online 26.1.2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany

ENDOSCOPY E-VIDEOS
https://eref.thieme.de/e-videos

Endoscopy E-Videos is an open access online section, reporting on interesting cases and new techniques in gastroenterological endoscopy. All papers include a high quality video and all contributions are freely accessible online. Processing charges apply (currently EUR 375), discounts and waivers acc. to HINARI are available.

This section has its own submission website at https://mc.manuscriptcentral.com/e-videos