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ABSTRACT

Background Machine learning (ML) is considered an impor-

tant technology for future data analysis in health care.

Methods The inherently technology-driven fields of diagnos-

tic radiology and nuclear medicine will both benefit from ML

in terms of image acquisition and reconstruction. Within the

next few years, this will lead to accelerated image acquisition,

improved image quality, a reduction of motion artifacts and –

for PET imaging – reduced radiation exposure and new

approaches for attenuation correction. Furthermore, ML has

the potential to support decision making by a combined ana-

lysis of data derived from different modalities, especially in

oncology. In this context, we see great potential for ML in mul-

tiparametric hybrid imaging and the development of imaging

biomarkers.

Results and Conclusion In this review, we will describe the

basics of ML, present approaches in hybrid imaging of MRI,

CT, and PET, and discuss the specific challenges associated

with it and the steps ahead to make ML a diagnostic and clin-

ical tool in the future.

Key Points:
▪ ML provides a viable clinical solution for the reconstruc-

tion, processing, and analysis of hybrid imaging obtained

from MRI, CT, and PET.

Citation Format
▪ Küstner T, Hepp T, Seith F. Multiparametric Oncologic

Hybrid Imaging: Machine Learning Challenges and Oppor-

tunities. Fortschr Röntgenstr 2022; 194: 605–612

ZUSAMMENFASSUNG

Hintergrund Maschinelles Lernen (ML) gilt als eine wichtige

Technologie für die zukünftige Datenanalyse im Gesundheits-

wesen.

Methode Die inhärent technologiegetriebene diagnostische

Radiologie und Nuklearmedizin werden sowohl bei der

Bildaufnahme als auch bei der Bildrekonstruktion von ML profi-

tieren. In den nächsten Jahren wird dies zu einer beschleunig-

ten Bildaufnahme, einer verbesserten Bildqualität, einer

Reduzierung von Bewegungsartefakten und – für die PET-Bild-

gebung – zu einer reduzierten Strahlenexposition und neuen

Ansätzen zur Schwächungskorrektur führen. Darüber hinaus

hat ML das Potenzial, die Entscheidungsfindung durch eine

kombinierte Analyse von Daten aus verschiedenen Modalitä-

ten, insbesondere im Bereich der Onkologie, zu unterstützen.

In diesem Zusammenhang sehen wir ein großes Potenzial für

ML in der multiparametrischen Hybrid-Bildgebung und der

Entwicklung von bildgebenden Biomarkern.

Ergebnisse und Schlussfolgerung In diesem Review werden

wir die Grundlagen von ML beschreiben, Ansätze in der hybri-

den Bildgebung von MRT, CTund PET vorstellen und die damit

verbundenen spezifischen Herausforderungen und die kom-

menden Schritte diskutieren, um ML in Zukunft zu einem

diagnostischen und klinischen Werkzeug zu machen.

Kernaussagen:
▪ ML bietet eine praktikable klinische Lösung für die Rekon-

struktion, Verarbeitung und Analyse von Hybrid-Bildge-

bung der MRT, CT und PET.
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Background

Machine learning (ML) has become ubiquitous and is considered
to be an important technology for health care data analysis in
the future. The scientific interest is high: the number of publica-
tions listed on PubMed with the search query “machine learning”
has increased exponentially from 57 in the year 2000 to 16 722 in
2020. In 2017, > 500 projects received total funding of 264million
USD from the National Institutes of Health for clinical research
projects applying ML techniques [1] and even new journals like
Nature Machine Intelligence were founded to pool expertise and
build platforms for the increasing number of submitted papers.
Inherently technology-driven, data processing has become an
integral element of radiology since the introduction of a standard
to archive and transfer imaging data in 1985 [2]. For decades, the
main focus of imaging research has been improving image quali-
ty, reducing radiation exposure, accelerating image acquisition or
– for nuclear medicine – developing new tracers. Although ML has
the potential in multiparametric and hybrid imaging to accelerate
image acquisition [3] or support attenuation correction in posi-
tron-emission tomography (PET) [4], a substantial innovation of
ML is to support image interpretation, i. e. diagnostic decision
support [5, 6], across all imaging modalities. Oncologic imaging
is a major field of application for ML. Since cancer is one of the
leading causes of death worldwide, treatment options are rapidly
evolving and over the last two decades, health spending on can-
cer has increased faster than the increase of cancer incidence
(total cost of cancer in Europe was €199 billion in 2018 [7]).
Although new biomarkers like circulating cell-free tumor DNA
(i. e., liquid biopsy) are on the rise [8], imaging plays a crucial
role in therapy planning and response assessment in clinical trials.
Despite the broad spectrum of available (semi-)quantitative ima-
ging techniques in radiology and tracers in nuclear medicine,
accepted criteria to define cancer or evaluate treatment response
based on more than one imaging parameter (e. g., the diameter,

RECIST, or glucose consumption, PERCIST) of a tumor are rare
(e. g., PIRADS). Multiparametric oncologic hybrid imaging, i. e.,
the simultaneous acquisition of anatomical information and
(several) functional tissue parameters using two different scan
technologies (PET combined with computed tomography, PET/
CT, or magnetic resonance imaging, PET/MRI) is aiming to provide
deeper insight into tumor biology. Nonetheless, to be superior to
conventional imaging is a challenging task and requires technical
knowledge of all imaging modalities and pitfalls of its combina-
tion and an understanding of cancer biology and the specific
mechanism of action of the applied therapy. ML extracts imaging
features and has the potential to support the interpretation and
acceptance of multiparametric oncologic imaging by providing
new biomarkers of clinical relevance. In the present review, we
discuss the techniques for image preparation, automated lesion
segmentation, and data analysis. Finally, we will discuss possible
approaches to overcome current limitations.

Machine learning basics

Different types of tasks can be solved using ML, such as image
segmentation (e. g., delineation of lesions), image classification
(e. g., benign versus malignant lesions), and regression tasks
(e. g., estimation of lesion permeability). The main purpose of ML
is to train a mathematical model that, based on the provided data,
learns a representation with respect to the underlying task as
shown in ▶ Fig. 1. The learning model represents any (non-)linear
and parametric model that maps the inputs to the model outputs.
The mapping function can be, for example, a neural network (or
any other parametric model) whose parameters can be optimized
under some given cost function. The cost function, also known as
the error or loss function, is a quantitative measure that describes
the match between the model predicted output and the desired
target (depending on the type of learning).

▶ Fig. 1 Overview of machine learning (ML) training, validation, and test phase. During training, the model learns from a pool of (labelled) data –
depending on the type of learning (Fig. 2) – the model parameters. ML hyperparameters are optimized on a separate validation set. The best
trained model is applied during inference/test on new unseen data. The input data can be images or pre-processed features, with the output
(classification or regression) depending on the underlying application.
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The input to the model can be an image, numerical informa-
tion, or any pre-processed data of these inputs from previous
feature extraction steps, like features as used in radiomics [9].
The output varies depending on the respective task. While for
regression, e. g., image reconstruction or image-to-image transla-
tions, a continuous-valued output per voxel is required, classifica-
tion tasks, e. g., image segmentation or treatment response pre-
diction, provide a discrete-valued output on a global (whole
image) or local (patch or voxel) scale.

During a training process, ML models are provided evidence in
the form of data samples such that the parameters of the neural
network can be learned to predict a reasonable output for any
new (unseen) input. During testing, the model is fixed, and the
trained parameters generate the output from new unseen test
data. The models perform a sequence of operations on the inputs
to yield the task-specific output. The main aim of the models is to
generalize based on their learned experience to minimize their
associated empirical risk. The models are usually iteratively train-
ed and tuned on a training and evaluation set, with the final trained
model being applied to unseen test data. The training, evaluation,
and test sets are disjunct sets with ideally distinct patients to mini-
mize bias.

Types of learning can be differentiated based on the availability
of label information and the type of label integration during train-
ing, as illustrated in ▶ Fig. 2. In principle, this depends on if and
how a human observer is involved during training. In supervised
learning, data samples along with their task-specific labels exist in
the database. Labelling can be very time- and cost-intensive and
often requires human interaction, ranging from data sorting and
curating to annotating structures within the image. In semi-super-
vised learning, both labelled and unlabeled data are included in the
learning process. The unlabeled data provides additional informa-
tion about the underlying data distribution. Self-supervised learn-
ing circumvents the problem of external labels. The input data
itself is used to guide the learning. In a similar sense, in reinforce-
ment learning the model receives feedback as rewards or penal-

ties, based on its current prediction, which drives the training pro-
cedure. Active learning integrates an oracle into the training
procedure which is periodically queried to either label or select
the next most meaningful samples for training. The oracle is in
most cases a human observer but can also be another algorithm.
In unsupervised learning, no labelled data is available that could be
leveraged to guide the training. The network purely learns to iden-
tify patterns in the data. Common approaches are clustering [10]
(e. g., k-means or Gaussian Mixture Models), principal component
analysis (PCA), (variational) autoencoders [11, 12], Deep Belief
Networks [13], and Generative Adversarial Networks (GANs)
[14]. Transfer learning investigates the possibility to transfer
knowledge between models or tasks. It can involve sharing infor-
mation from simpler to more complex tasks, or from a source do-
main to another (but similar) target domain [15–17]. Federated
learning [18–20] trains a model across multiple decentralized
devices, where each device holds their own set of training data
and only the model weights are shared across devices. This allows
training across highly heterogeneous datasets. Federated learning
has a vast potential in medicine, where sharing of data across mul-
tiple centers is challenging due to data protection and data priv-
acy [21].

Machine learning-based processing and analy-
sis of multiparametric and hybrid imaging

In the field of medical imaging, ML methods have been proposed
to support the human observer in examining the task of interest
with recent shifting from hand-crafted radiomic features [22] to-
wards data-driven deep learning features. The applications of ML
in the processing and analysis of multiparametric and hybrid
imaging ranges from the acquisition side to deriving a diagnostic
biomarker as depicted in ▶ Fig. 3 as an example.

On the acquisition side, ML can enable acceleration of the imag-
ing sequence – especially for MRI, in which long protocols can be

▶ Fig. 2 Overview of types of learning with human observer involvement.

607Küstner T et al. Multiparametric Oncologic Hybrid… Fortschr Röntgenstr 2022; 194: 605–612 | © 2022. Thieme. All rights reserved.

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.



expected for multiparametric imaging [23–25]. Sampling below
the Nyquist-Shannon limit requires incoherent and randomly
sampled data points that can be sparsely represented in a trans-
form domain [26]. Reconstruction is usually performed iteratively
with non-linear methods which for conventional techniques can
require substantial computation power and time. ML can reduce
this workload by training an appropriate reconstruction model off-
line before usage and which can then allow inference in a few
seconds. In some cases, this also allows further improvement in
reconstructed image quality or reduction of acquisition time (in
the order of 2 to 8 times, in some applications for which more
degrees of freedom can be exploited around 16 times or higher)
over conventional reconstruction algorithms [27–31].

Similar advancements can be achieved in PET imaging. Instead
of administering the full dose, a reduced dose (in the range of
50% to 90% reduced administered dose) or alternatively shorter
imaging duration can be performed with the former being given
preference [32, 33]. The reduction of long PET reconstruction
times in iterative algorithms such as maximum-likelihood expec-
tation maximization or its incremental updated version, ordered
subset expectation maximization, have been studied in end-to-
end trained PET reconstruction models [34]. To improve the
image quality of these reconstructions, imaging data from other
modalities like MRI can be leveraged in a joint reconstruction
[35, 36].

Reliable quantitative PET reconstruction depends on accurate
attenuation coefficients derived from (simultaneous) CT or MR
imaging. ML has also shown promising advances here to predict
missing features in images (e. g., bone in MRI) or to learn a more
generalizable realization [4, 37]. In the case of missing imaging
data from other modalities for deriving an attenuation map, PET
data itself can serve as the source with an ML model trained to re-

plicate CT-derived attenuation maps in an image-to-image trans-
lation [38]. Besides attenuation correction, physiological motion
can have a severe impact on the obtained image quality. Motion
correction with motion models derived from other imaging mo-
dalities or surrogate measures [39–47] can be integrated [48] to
compensate for motion-induced blurring and aliasing in PET.

Before or intertwined with image analysis, segmentation can
be employed to focus the model’s attention on the region of in-
terest, with an additional benefit of automatically streamlining
the processing workflow. These automatic segmentations can
support in segmenting lesions [49–51] or organs/tissues of inter-
est [52]. In this context, multiparametric and hybrid imaging can
be utilized to provide distinct and non-redundant information for
better localization of the target region or to make it more robust
with respect to outliers and residual imaging artifacts. Melanoma
lesion segmentation from hybrid data is shown in ▶ Fig. 4 for an
ML-based solution in comparison to a manually labelled ground
truth.

The analysis of imaging data for multiparametric and hybrid
imaging [53–55] mainly supports in cancer classification (e. g.,
lung nodules in chest CT [56], skin lesions [57], or lymphoma
and lung cancer [58]), disease classification [59–61] and the
detection of melanoma [62–66], abnormalities, and tumors [67–
73]. Often these models combine contextual, non-imaging, and
imaging information in an end-to-end fashion under the usage of
multi-stream convolutional neural networks (CNNs) to accommo-
date multiple sources of information (e. g., imaging and non-ima-
ging data) or representations of the input (e. g., imaging modal-
ities or multiple scales, orientations) [74, 75].

The obtained image analysis [76–78] and image-based disease
diagnostics and prognostics [79, 80] can serve as biomarkers that
could later be integrated into diagnostic decision-making. How-

▶ Fig. 3 Multiparametric and hybrid imaging data processing steps: Acquisition, reconstruction, post-processing and analysis, with exemplary use
cases of machine learning-based methods within these processing steps.
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ever, despite the high performance, reduced processing time, and
improved workflow demonstrated by ML models, most methods
have only been studied in a laboratory environment and clinical
adoption is still limited [81]. So far, ML methods have been prima-
rily proposed with a specific task in mind and were driven by learn-
ing patterns on the provided database. ML is good at finding these
patterns in data but cannot explain how they are connected and
to what extent this estimation is reasonable or reliable. Domain-
aware (e. g., population, prevalence, imaging application, ima-
ging hardware, imaging conditions) and expert knowledge (e. g.,
targeted pathology, extractable information) are valuable infor-
mation that are only partially considered within the context of
ML-based solutions. Models could however better adapt to chan-
ging scenarios and domains if causal information exchange is con-
sidered. Although multiparametric hybrid data may allow
increased information sharing among imaging data samples, in
particular the handling of this multiparametric hybrid data brings
several challenges, like different imaging orientations, modalities,
contrasts, and so on, that need to be addressed and accounted for
in ML processing. Furthermore, widespread usage is also limited
by the generalizability of the models due to lack of widespread
and diverse data. Transfer learning or federated learning strate-
gies could help to mitigate these problems in the future. Transfer-
ring knowledge between domains [82], generalizing models bet-
ter for different domains [83], including expert’s decision-making
into model predictions [84, 85], or examining the influence of
medical imaging meta information [86] can help to shape the
next generation of ML models for multiparametric and hybrid
imaging.

Conclusion

In this review, we discussed the current state-of-the-art approa-
ches in ML with a focus on hybrid imaging. Although the results
are promising, there is general skepticism about ML as a “black
box”-like tool. ML can extract data from multiparametric images
and relates this information to biological or clinical endpoints. An
important point of criticism is the missing underlying biological
rationale of this entirely data-driven approach which stands in
contrast to biomarker development driven by a biology-based
hypothesis [87]. Of course, radiologic images are influenced by
tissue properties (e. g., photon attenuation, proton density, T1/
T2 times, diffusivity, glucose consumption) on a – more or less –
molecular scale, and a validation of imaging features to a histopa-
thologic or genetic ground truth would increase the acceptance of
imaging data analysis. However, the link between a genetic code
or cell surface markers to the Hounsfield unit/signal intensity/SUV
(or the combination) of pixels in a macroscopic CT/MRI/PET image
is rather complex and proving this link might be too ambitious for
in-vivo images. This is all the more important as the supposed re-
ference standard, like the pathology, might not be more precise
than the imaging biomarker to be validated [88]. Therefore, a
post-hoc generation of hypotheses and a validation through clini-
cal endpoints might be more preferred for ML techniques. On this
note, preference should be given to self-explaining ML strategies
that output their prediction together with an explanation for that
prediction, turning output interpretation into explanation [89]. To
make ML an accepted diagnostic tool, there are several steps
ahead. A major issue for ML is the limitation and the heterogene-
ity of available data for training. The Quantitative Imaging Bio-
markers Alliance (QIBA, [90]) and The Cancer Imaging Archive
(TCIA, [91]) are initiatives aiming to make quantitative imaging

▶ Fig. 4 Exemplary melanoma lesion segmentation in two patients with a machine learning-based segmentation network from hybrid imaging
data in comparison to the manually labeled expert ground-truth. The segmented lesions are depicted in red.
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more robust and to pool cancer imaging data. To enable multicen-
ter and multidisciplinary data analysis, the prerequisites for digital
medicine in Europe need to be created. Therefore, the patchwork
of regulations throughout the European health systems including
strategies for data security, privacy, as well as ethical and legal
concerns need to be overcome [92]. Besides regulatory and bu-
reaucratic concerns, ML studies need computational power and
engineering effort. Therefore, a digital infrastructure is needed
to run ML algorithms in the clinical routine. Regarding ML sys-
tems, a stringent standardization and description of the analytical
methods in publications is crucial. For future implementations in
health care, traceability and auditability of ML systems is required
[93]. With these steps, ML can reach its full acceptance and poten-
tial in daily clinical usage.
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