Synthesis 2022; 54(15): 3473-3481
DOI: 10.1055/a-1729-9223
special topic
Bürgenstock Special Section 2021 – Future Stars in Organic Chemistry

Mimicking Enzymes: Taking Advantage of the Substrate-Recognition Properties of Metalloporphyrins in Supramolecular Catalysis

Naba Abuhafez
,
Antoine Perennes
,
This work was financially supported by the Centre National de la Recherche Scientifique (CNRS), Université de Rennes 1 (Défis scientifiques 2020), the Agence Nationale de la Recherche–Jeune Chercheuse-Jeune Chercheur (ANR–JCJC) (ANR-19-CE07-0039), Région­ Bretagne (ARED 2020 No. 1715) and College de France (PAUSE, Ph.D. grant to N.A.).


Abstract

The present review describes the most relevant advances dealing with supramolecular catalysis in which metalloporphyrins are employed as substrate-recognition sites in the second coordination sphere of the catalyst. The kinetically labile interaction between metallo­porphyrins (typically, those derived from zinc) and nitrogen- or oxygen-containing substrates is energetically comparable to the non-covalent interactions (i.e., hydrogen bonding) found in enzymes enabling substrate preorganization. Much inspired from host–guest phenomena, the catalytic systems described in this account display unique activities, selectivities and action modes that are difficult to reach by applying purely covalent strategies.



Publication History

Received: 06 December 2021

Accepted after revision: 03 January 2022

Accepted Manuscript online:
03 January 2022

Article published online:
23 March 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Supramolecular Catalysis . van Leeuwen PW. N. M. Wiley-VCH; Weinheim: 2008
  • 2 Supramolecular Catalysis: New Directions and Developments . van Leeuwen PW. N. M, Raynal M. Wiley-VCH; Weinheim: 2022
  • 3 Ringe D, Petsko GA. Science 2008; 320: 1428
  • 4 Kirby AJ, Hollfelder F. From Enzyme Models to Model Enzymes . The Royal Society of Chemistry; Cambridge: 2009
  • 5 Hammes GG, Benkovic SJ, Hammes-Schiffer S. Biochemistry 2011; 50: 10422
  • 6 Zhang X, Houk KN. Acc. Chem. Res. 2005; 38: 379
  • 7 Houk KN, Leach AG, Kim SP, Zhang X. Angew. Chem. Int. Ed. 2003; 42: 4872
  • 8 Koblenz TS, Wassenaar J, Reek JN. H. Chem. Soc. Rev. 2008; 37: 247
  • 9 Vriezema DM, Aragonès MC, Elemans JA. A. W, Cornelissen JJ. L. M, Rowan AE, Nolte RJ. M. Chem. Rev. 2005; 105: 1445
  • 10 Amouri H, Desmarets C, Moussa J. Chem. Rev. 2012; 112: 2015
  • 11 Yoshizawa M, Klosterman JK, Fujita M. Angew. Chem. Int. Ed. 2009; 48: 3418
  • 12 Fiedler D, Leung DH, Bergman RG, Raymond KN. Acc. Chem. Res. 2005; 38: 349
  • 13 Wiester MJ, Ulmann PA, Mirkin CA. Angew. Chem. Int. Ed. 2011; 50: 114
  • 14 Nath I, Chakraborty J, Verpoort F. Chem. Soc. Rev. 2016; 45: 4127
  • 15 Cook TR, Zheng Y.-R, Stang PJ. Chem. Rev. 2013; 113: 734
  • 16 Raynal M, Ballester P, Vidal-Ferran A, van Leeuwen PW. N. M. Chem. Soc. Rev. 2014; 43: 1734
  • 17 Dong Z, Luo Q, Liu J. Chem. Soc. Rev. 2012; 41: 7890
  • 18 Meeuwissen J, Reek JN. H. Nat. Chem. 2010; 2: 615
  • 19 Leenders SH. A. M, Gramage-Doria R, de Bruin B, Reek JN. H. Chem. Soc. Rev. 2015; 44: 433
  • 20 Pemberton BC, Raghunathan R, Volla S, Sivaguru J. Chem. Eur. J. 2012; 18: 12178
  • 21 Matt D, Harrowfield J. ChemCatChem 2021; 13: 153
  • 22 Otte M. ACS Catal. 2016; 6: 6491
  • 23 Gaeta C, Talotta C, De Rosa M, La Manna P, Soriente A, Neri P. Chem. Eur. J. 2019; 25: 4899
  • 24 Percástegui EG, Ronson TK, Nitschke JR. Chem. Rev. 2020; 120: 13480
  • 25 Kaya Z, Bentouhami E, Pelzer K, Armspach D. Coord. Chem. Rev. 2021; 445: 214066
  • 26 Fang Y, Powell JA, Li E, Wang Q, Perry Z, Kirchon A, Yang X, Xiao Z, Zhu C, Zhang L, Huang F, Zhou H.-C. Chem. Soc. Rev. 2019; 48: 4707
  • 27 Fei X, Wang P, Zhang D, Wang H, Wu Z. ChemCatChem 2021; 13: 2313
  • 28 Jans AC. H, Caumes X, Reek JN. H. ChemCatChem 2019; 11: 287
  • 29 Morimoto M, Bierschenk SM, Xia KT, Bergman RG, Raymond KN, Toste FD. Nat. Catal. 2020; 3: 969
  • 30 Zhang Q, Catti L, Tiefenbacher K. Acc. Chem. Res. 2018; 51: 2107
  • 31 Ajami D, Rebek JJr. Acc. Chem. Res. 2013; 46: 990
  • 32 Rebek JJr. Angew. Chem. Int. Ed. 2005; 44: 2068
  • 33 The template strategy relies on building blocks that contain multiple orthogonal binding sites: the central building block contains the active site for catalysis, while other binding sites facilitate the formation of a cage structure around the active site via self-assembly. For a recent account, see: Jongkind LJ, Caumes X, Hartendorp AP. T, Reek JN. H. Acc. Chem. Res. 2018; 51: 2115
  • 34 Bauder C, Semeril D. Eur. J. Inorg. Chem. 2019; 4951
  • 35 Natarajan N, Brenner E, Semeril D, Matt D, Harrowfield J. Eur. J. Org. Chem. 2017; 6100
  • 36 Semeril D, Matt D. Coord. Chem. Rev. 2014; 279: 58
  • 37 Vaquero M, Rovira L, Vidal-Ferran A. Chem. Commun. 2016; 52: 11038
  • 38 Breit B. Angew. Chem. Int. Ed. 2005; 44: 6816
  • 39 Carboni S, Gennari C, Pignataro L, Piarulli U. Dalton Trans. 2011; 40: 4355
  • 40 Raynal M, Ballester P, Vidal-Ferran A, van Leeuwen PW. N. M. Chem. Soc. Rev. 2014; 43: 1660
  • 41 Mote NR, Chikkali SH. Chem. Asian J. 2018; 13: 3623
  • 42 Mahmudov KT, Gurbanov AV, Guseinov FI, Guedes da Silva MF. C. Coord. Chem. Rev. 2019; 387: 32
  • 43 Olivo G, Capocasa G, Del Giudice D, Lanzalunga O, Di Stefano S. Chem. Soc. Rev. 2021; 50: 7681
  • 44 Dydio P, Reek JN. H. Chem. Sci. 2014; 5: 2135
  • 45 Davis HJ, Phipps RJ. Chem. Sci. 2017; 8: 864
  • 46 Das S, Brudvig GW, Crabtree RH. Chem. Commun. 2008; 413
  • 47 Trouvé J, Gramage-Doria R. Chem. Soc. Rev. 2021; 50: 3565
  • 48 Beletskaya I, Tyurin VS, Tsivadze AY, Guilard R, Stern C. Chem. Rev. 2009; 109: 1659
  • 49 Belanger S, Keefe MH, Welch JL, Hupp JT. Coord. Chem. Rev. 1999; 190–192: 29
  • 50 Toma HE, Araki K. Coord. Chem. Rev. 2000; 196: 307
  • 51 Durot S, Taesch J, Heitz V. Chem. Rev. 2014; 114: 8542
  • 52 Elemans JA. A. W, Slagt VF, Rowan AE, Nolte RJ. M. Isr. J. Chem. 2005; 45: 271
  • 53 Kleij AW, Reek JN. H. Chem. Eur. J. 2006; 12: 4218
  • 54 Suslick KS, Rakow NA, Kosal ME, Chou J.-H. J. Porphyrins Phthalocyanines 2000; 4: 407
  • 55 Nakamura Y, Aratani N, Osuka A. Chem. Soc. Rev. 2007; 36: 831
  • 56 Imahori H, Fukuzumi S. Adv. Funct. Mater. 2004; 14: 525
  • 57 Hosseini MW. Acc. Chem. Res. 2005; 38: 313
  • 58 Wojaczyński J, Latos-Grażyński L. Coord. Chem. Rev. 2000; 204: 113
  • 59 Imamura T, Fukushima K. Coord. Chem. Rev. 2000; 198: 133
  • 60 Bols PS, Anderson HL. Acc. Chem. Res. 2018; 51: 2083
  • 61 Fukuzumi S, Lee Y.-M, Nam W. Tetrahedron 2020; 76: 131024
  • 62 Bonar-Law RP, Mackay LG, Walter CJ, Marvaud V, Sanders JK. M. Pure Appl. Chem. 1994; 66: 803
  • 63 Sanders JK. M. Pure Appl. Chem. 2000; 72: 2265
  • 64 Waiter CJ, Anderson HL, Sanders JK. M. J. Chem. Soc., Chem. Commun. 1993; 458
  • 65 Wylie RS, Sanders JK. M. Tetrahedron 1995; 51: 513
  • 66 Marty M, Clyde-Watson Z, Twyman LJ, Nakash M, Sanders JK. M. Chem. Commun. 1998; 2265
  • 67 Nakash M, Clyde-Watson Z, Feeder N, Davies JE, Teat SJ, Sanders JK. M. J. Am. Chem. Soc. 2000; 122: 5286
  • 68 Mackay LG, Wylie RS, Sanders JK. M. J. Am. Chem. Soc. 1994; 116: 3141
  • 69 Sanders JK. M. Chem. Eur. J. 1998; 4: 1378
  • 70 Oliveri CG, Gianneschi NC, Nguyen ST, Mirkin CA, Stern CL, Wawrzak Z, Pink M. J. Am. Chem. Soc. 2006; 128: 16286
  • 71 Shultz AM, Farha OK, Hupp JT, Nguyen ST. J. Am. Chem. Soc. 2009; 131: 4204
  • 72 Deria P, Gómez-Gualdrón DA, Hod I, Snurr RQ, Hupp JT, Farha OK. J. Am. Chem. Soc. 2016; 138: 14449
  • 73 Li L, Yang L, Li X, Wang J, Liu X, He C. Inorg. Chem. 2021; 60: 8802
  • 74 Kang B, Kurutz JW, Youm K.-T, Totten RK, Hupp JT, Nguyen ST. Chem. Sci. 2012; 3: 1938
  • 75 Mondal P, Sarkar S, Rath SP. Chem. Eur. J. 2017; 23: 7093
  • 76 van Leeuwen PW. N. M. Appl. Catal., A 2001; 212: 61
  • 77 van Leeuwen PW. N. M, Chadwick JC. Homogeneous Catalysts: Activity – Stability – Deactivation . Wiley-VCH; Weinheim: 2011
  • 78 Crabtree RH. J. Organomet. Chem. 2014; 751: 174
  • 79 Crabtree RH. Chem. Rev. 2015; 115: 127
  • 80 Jónsson S, Odille FG. J, Norrby P.-O, Wärnmark K. Chem. Commun. 2005; 549
  • 81 Jónsson S, Odille FG. J, Norrby P.-O, Wärnmark K. Org. Biomol. Chem. 2006; 4: 1927
  • 82 Sheibani E, Wärnmark K. Org. Biomol. Chem. 2012; 10: 2059
  • 83 Lindbäck E, Dawaigher S, Wärnmark K. Chem. Eur. J. 2014; 20: 13432
  • 84 Lindbäck E, Cherraben S, Francoia J.-P, Sheibani E, Lukowski B, Pron A, Norouzi-Arasi H, Mansson K, Bujalowski P, Cederbalk A, Pham TH, Wixe T, Dawaigher S, Wärnmark K. ChemCatChem 2015; 7: 333
  • 85 Lindbäck E, Norouzi-Arasi H, Sheibani E, Ma D, Dawaigher S, Wärnmark K. ChemistrySelect 2016; 1: 1789
  • 86 Kadri M, Hou J, Dorcet V, Roisnel T, Bechki L, Miloudi A, Bruneau C, Gramage-Doria R. Chem. Eur. J. 2017; 23: 5033
  • 87 Zardi P, Roisnel T, Gramage-Doria R. Chem. Eur. J. 2019; 25: 627
  • 88 Trouvé J, Zardi P, Al-Shehimy S, Roisnel T, Gramage-Doria R. Angew. Chem. Int. Ed. 2021; 60: 18006
  • 89 Saito M, Nishibayashi Y, Uemura S. Organometallics 2004; 23: 4012
  • 90 Harvey PD, Tasan S, Gros CP, Devillers CH, Richard P, Le Gendre P, Bodio E. Organometallics 2015; 34: 1218
  • 91 Longevial J.-F, Clément S, Wytko JA, Ruppert R, Weiss J, Richeter S. Chem. Eur. J. 2018; 24: 15442
  • 92 Suijkerbuijk BM. J. M, Klein Gebbink RJ. M. Angew. Chem. Int. Ed. 2008; 47: 7396
  • 93 Fan W.-T, Li Y, Wang D, Ji S.-J, Zhao Y. J. Am. Chem. Soc. 2020; 142: 20524
  • 94 Kadish KM, Smith KM, Guillard R. Handbook of Porphyrin Science, Vol. 1–44. World Scientific; Singapore: 2010
  • 95 Guilard R, Kadish KM. Chem. Rev. 1988; 88: 1121
  • 96 Meunier B. Chem. Rev. 1992; 92: 1411
  • 97 Che C.-M, Kar-Yan Lo V, Zhou C.-Y, Huang J.-S. Chem. Soc. Rev. 2011; 40: 1950
  • 98 Kasemthaveechok S, Fabre B, Loget G, Gramage-Doria R. Catal. Sci. Technol. 2019; 9: 1301
  • 99 Costentin C, Robert M, Savéant J.-M. Curr. Opin. Electrochem. 2017; 2: 26
  • 100 Zhang R, Warren JJ. ChemCatChem 2021; 14: 293