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Abstract Coronary artery disease, including myocardial infarction (MI), remains a leading cause
of global mortality. Rapid reperfusion therapy is key to the improvement of patient
outcome but contributes substantially to the final cardiac damage. This phenomenon is
called “ischemia/reperfusion injury (IRI).” The underlying mechanisms of IRI are
complex and not fully understood. Contributing cellular and molecular mechanisms
involve the formation of microthrombi, alterations in ion concentrations, pH shifts,
dysregulation of osmolality, and, importantly, inflammation. Beyond their known
action as drivers of the development of coronary plaques leading to MI, platelets have
been identified as important mediators in myocardial IRI. Circulating platelets are
activated by the IRI-provoked damages in the vascular endothelium. This leads to
platelet adherence to the reperfused endothelium, aggregation, and the formation of
microthrombi. Furthermore, activated platelets release vasoconstrictive substances,
act via surface molecules, and enhance leukocyte infiltration into post-IR tissue, that is,
via platelet–leukocyte complexes. A better understanding of platelet contributions to
myocardial IRI, including their interaction with other lesion-associated cells, is neces-
sary to develop effective treatment strategies to prevent IRI and further improve the
condition of the reperfused myocardium. In this review, we briefly summarize platelet
properties that modulate IRI. We also describe the beneficial impacts of antiplatelet
agents as well as their mechanisms of action in IRI beyond classic effects.
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Introduction

Platelets are anucleate cells that play a primary role in hemo-
stasis. On top of that, platelets have been recognized as potent
immunomodulators that can secrete numerous factors and
express a variety of surface molecules to modulate leukocyte
functions (e.g., phagocytosis or extravasation).1 For example,
platelets secrete chemokines like RANTES/C-C motif ligand
(CCL)5, serotonin, or platelet factor 4 (PF4)/C-X-C motif ligand
(CXL)4 at sites of inflammation to recruit leukocytes.2–6 To
establish direct cell–cell interactionswith leukocytes or endo-
thelial cells, platelets can secrete or expose adhesion proteins
such as P-selectin, fibronectin, fibrinogen, or von Willebrand
factor (VWF).7–14 Furthermore, platelets can activate the com-
plement system and are even able to directly capture and
neutralize pathogens.1,15

Coronaryartery disease (CAD), includingmyocardial infarc-
tion (MI), together with stroke, remains the leading cause of
global mortality.16 Rapid reperfusion via percutaneous coro-
nary intervention (PCI) significantly improves theprognosis of
patients suffering from acute MI. However, this sudden reper-
fusion causes adverse effects itself and substantially contrib-
utes to the myocardial damage.17,18 This is referred to as
ischemia/reperfusion injury (IRI) andwas reported to account
for nearly 50% of the final infarct size in acute MI.19 IRI is
associated with no-reflow, myocardial stunning, and arrhyth-

mias.18,20 The cellular and molecular mechanisms underlying
IRI are complex and include inflammation, endothelial dys-
function, alterations incalciumconcentrations, andpH, aswell
as mitochondrial dysfunction and oxidative stress.18,21 Fur-
thermore, unregulated alterations in cytosolic osmolality and
cell volume provoke cellular and interstitial edema leading to
microvascular obstruction.22,23

IRI is accompanied by leukocyte infiltration and inflam-
mation.24,25 An overshoot of this inflammatory reaction
(which is actually necessary for the cardiac tissue repair)
can worsen the initial injury.25,26

Platelets are known to play a key role in the growth of
coronary plaques and the thrombotic occlusion of coronary
vessels that cause ischemia and MI.27 But platelets are also
central players in the course of myocardial IRI (►Fig. 1).
Circulating platelets are activated by the IRI-provoked dam-
ages in the vascular endothelium.28 Subsequently, activated
platelets adhere to the reperfused endothelium, aggregate,
and formmicrothrombi.29 They also release vasoconstrictive
substances29 and activated platelets in platelet–leukocyte
complexes (PLCs) enhance leukocyte infiltration into the
post-IR tissue.30 In addition, it is likely that ischemia and
reperfusion themselves influence certain platelet properties
relevant to IRI by altering oxygen concentration.31,32

In this review, we briefly summarize platelet properties
that modulate IRI. Additionally, we describe the beneficial

Fig. 1 Platelets in myocardial ischemia/reperfusion injury (IRI). IRI-provoked endothelial damage causes platelet activation. During platelet
activation, adhesion proteins, e.g., P-selectin, are expressed or exposed and facilitate interaction with leukocytes, leading to the formation of
platelet–leukocyte complexes. This leads to recruitment of leukocytes to the site of inflammation as well as their activation and degranulation.
Other platelet surface molecules that are important mediators in IRI are glycoprotein (GP) IIb/IIIa, GPVI, and P2Y12. Furthermore, secretable
factors, e.g., serotonin, thrombin, and platelet activating factor (PAF) in high concentrations, aggravate cardiac damage. TXA2, thromboxane
A2; EC, endothelial cell; I/R, ischemia/reperfusion; IRI, ischemia/reperfusion injury. The Figure was created using Servier Medical Art, provided by
Servier, licensed under a Creative Commons Attribution 3.0 unported license.
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impacts of antiplatelet agents as well as their mechanisms of
action in IRI beyond classic effects.

Thromboxane A2

Cyclooxygenases (COX) catalyze the conversion of arachi-
donic acid to prostaglandin G2 andH2. This is the prerequisite
for subsequent generation of thromboxane A2 (TXA2) via
thromboxane synthase.33 Binding of TXA2 to its receptor on
platelets leads to platelet-shape change, inside-out activa-
tion of integrins, and degranulation, as well as intracellular
Ca2þ increase.33 TXA2 is considered a pro-aggregatory pros-
tanoid and therefore is implicated in platelet-dependent
thrombotic (re-)occlusion of the culprit atherosclerotic le-
sion, stent thrombosis, and reducedmicrocirculatory flow.34

Furthermore, TXA2 mediates effects through its receptor on
other cell types, that is, within the vasculature where it
contributes to vasoconstriction.35 Aspirin, thefirst antiplate-
let drug to be clinically used, irreversibly inhibits primarily
COX1 (which is constitutively expressed in platelets) by
acetylation and thereby interrupts the synthesis pathway
generating TXA2.34 Already decades ago, the “Second Inter-
national Study of Infarct Survival” (ISIS-2) found convincing
evidence for the efficacy of aspirin monotherapy in the
treatment of patients at the onset of acute MI.36 And to
date, aspirin in combination with P2Y12 inhibitors is recom-
mended for acute coronary syndrome treatment.37 Beyond
its inhibitory effect on COX enzymes, aspirin was reported to
reduce PF-3 and -4 as well as coagulation factors II, VII, IX,
and X (at 200mg) and to have fibrinolytic activity at very
high doses (1,800mg).38,39 Direct evidence for an interfer-
ence of aspirin with molecular mechanisms specifically
underlying myocardial reperfusion injury are rare,
but secondary effects of platelet inhibition including reduced
reactive oxygen species (ROS) and inflammatory cytokines as
well as improved endothelial function seem to contribute to
the beneficial effect.35 Furthermore, a recent study on rats
showed that in the setting of transient ligation of the left
anterior descending coronary artery (LAD), aspirin treat-
ment 10minutes before reperfusion results in cardioprotec-
tion (i.e., less apoptosis, improved function, and decreased
infarct size) through activation of JAK2/STAT3 signaling in
myocardial tissue.40

Thrombin
Thrombin, thekeyeffector of the coagulation cascade, acts on
platelets by cleaving protease activated receptor (PAR)1 and
PAR4 (respectively PAR3 and PAR4 in mice).41 This leads to
platelet degranulation and the accompanying release of
molecules including thrombin itself and adenosine diphos-
phate (ADP) as well as serotonin and P-selectin (the role of
the latter two in IRI will be explored in other articles of this
review). Thrombin is also a potent activator of platelet
integrin glycoprotein (GP)IIb/IIIa and thereby drives rapid
platelet aggregation.41 Other than directly acting on plate-
lets, thrombin cleaves fibrinogen into fibrin as well as
multiple PARs on endothelial cells and leukocytes.41 The
activation of PARs leads to upregulation of endothelial
adhesion molecules and proinflammatory cytokines.42 Alto-

gether, thrombin is a major player in hemostasis and throm-
bosis as well as a modulator of the inflammatory response.
Microvascular thrombosis with associated inflammation is
well recognized in the context of IRI.

Bivalirudin is a direct and specific thrombin inhibitor
which is successfully used for anticoagulation in patients
undergoing PCI for MI.43 In vitro data suggest that on top of
mere anticoagulation, bivalirudin leads to reduced throm-
bin-dependent platelet PAR activation44 and may exert an
anti-inflammatory effect via a reduction of soluble CD40
ligand (sCD40L) during PCI.45 In amouse study, the inhibition
of thrombin generation through the TF pathway ameliorated
I/R by decreasing chemokine expression and leukocyte
infiltration.46

Another opportunity to suppress the action of thrombin is
the blockade of its receptors. An advantage of blocking PARs
instead of thrombin itself is that thrombin-dependent fibrin
generation is preserved. This may reduce bleeding compli-
cations. Preclinical studies show effectiveness of PAR inhibi-
tion in experimental MI models. On the one hand, PAR4
deficiency was demonstrated to result in cardioprotection in
the early phase after acute MI in mice in part by reducing
early inflammatory signals and myocyte apoptosis.47,48 On
the other hand, PAR4 deficiency was demonstrated to impair
myocardial healing after chronic MI leading to increased
cardiac rupture and mortality. Mechanistically, this was
explained by altered neutrophil properties that prevent
normal reparative processes to resolve the inflammatory
response.48 Such data suggest that permanent PAR4 inhibi-
tion should be viewed with caution. Clinical trials demon-
strated that PAR1 inhibition with vorapaxar (which leads to
interruption of thrombin-mediated platelet aggregation) in
patients with previous MI is effective in the secondary
prevention of recurrent thrombotic events, albeit at the
expense of an increase in major bleedings.49

Platelet activity is strongly interwoven with coagulation.
For example, activated platelets secrete coagulation factor V
which in its activated form interacts with activated factor
X.50 In the common pathway of coagulation, factor X is
directly linked to thrombin generation. Additionally, its
active form, factor Xa, has independent effects through
PAR activation.51Anticoagulationwith the factor Xa inhibitor
rivaroxaban in patients with recent acute coronary syn-
drome reduces the risk of death from cardiovascular causes,
MI, or stroke.52,53 Beyond its main effect as an anticoagulant,
rivaroxaban also has pleiotropic effects including inhibition
of PAR-mediated platelet activation, inhibition of PAR-medi-
ated inflammation, and PAR-mediated fibroblast activity.52

Evidence from a preclinical study suggests that
the secondary prevention of cardiovascular events after
myocardial IRI in mice was in part mediated by reduced
inflammation and fibrosis in the left ventricle.54

Factor XI (FXI) belongs to the intrinsic pathway of the
coagulation cascade and is believed to play an important role
in thrombosis but only a minor role in hemostasis. Of note,
thrombin can enhance its own generation through a positive
feedback loop involving FXI.41 It was shown that the intrinsic
coagulation pathway contributes to myocardial IRI. In a
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model of transient LAD ligation in mice, myocardial IRI was
partially attenuated by FXI inhibition. The FXI inhibitor that
was applied in this study (14E11) has anti-inflammatory
properties in addition to its antithrombotic properties.
Therefore, cardioprotection was likely mediated by reducing
contact activation, thrombin generation, inflammation, or a
combination of these mechanisms.55 FXI inhibition may
provide a novel mechanism for anticoagulation, without
increasing the risk of clinically significant bleeding. Phase
II clinical trials for FXI inhibition (on top of a dual-antiplatelet
therapy) in patients following acute MI are ongoing.56

P2Y12 Receptor

Activation of the platelet P2Y12 receptor by ADP is important
in platelet aggregation and amplifies the platelet response to
other agonists. Consequently, inhibition of P2Y12 has an
antiaggregatory effect and is beneficial in the treatment of
MI. Several P2Y12 inhibitors are available, such as the thie-
nopyridines clopidogrel and prasugrel which have to be
metabolically activated and the adenosine triphosphate ana-
logs cangrelor and ticagrelor.

In vivo and ex vivo studies applying P2Y12 inhibitors in
dogs,57 rats,58,59 or rabbits60 show improved cardiac out-
come after experimental MI in terms of infarct size, tissue
perfusion, and cardiac function. Clinical trials also clearly
show improved outcome in MI patients undergoing P2Y12

inhibition.61–64 Consequently, P2Y12 antagonists in combi-
nationwith aspirin are standard of care in patients undergo-
ing PCI for themanagement of acuteMI in clinical practice.37

In addition to mere antiaggregatory effects of the P2Y12

inhibition, specific pharmacological (off-target) effects of
P2Y12 inhibitors were described. These properties provide a
potential additional positive effect on the reperfused myocar-
dium and are therefore of interest for clinical practice.65

It was shown that cangrelor and clopidogrel treatment, in
addition to inhibiting ADP-dependent platelet aggregation
and recruitment, decreased platelet P-selectin expression
and platelet–leukocyte interactions in CAD patients, which
constitutes a potential anti-inflammatory mechanism.66

Furthermore, in a rabbit model of MI, the cardioprotective
mechanisms of cangrelor and clopidogrel (measured as
decreased infarct size) were shown to involve signal trans-
duction during the reperfusion phase rather than simple
inhibition of intravascular coagulation. To further elucidate
cangrelor’s mechanism of action, the authors used inhibitors
for specific signaling pathways. They observed an involve-
ment of adenosine A2B receptors, extracellular signal-regu-
lated kinases (ERKs), Akt, redox signaling, andmitochondrial
KATP channels in the mediation of the protective effect of
cangrelor.60

The reversibly binding P2Y12 antagonist ticagrelor has
been reported to increase adenosine levels, which might
have an additional protective effect on the microcircula-
tion.67 Mechanistically, ticagrelor is claimed to increase
adenosine levels by inhibiting the equilibrative nucleoside
transporter 1, thereby protecting extracellular adenosine
from intracellular metabolism.68 The myocardial adenosine

increase provoked by ticagrelor was reported to add to
cardioprotection in experimental IRI, for example, in pigs69

and rats.70,71 The adenosine-related effects were used in
these studies to explain why ticagrelor was superior in its
cardioprotective effect compared with other applied P2Y12

antagonists, namely, prasugrel and clopidogrel. Interestingly,
ticagrelor was shown to enhance adenosine release from
human platelets under stirring in vitro.59

However, recently published studies also report conflict-
ing results.65,72 In a clinical study comparing treatment of
ST-elevation MI (STEMI) patients with ticagrelor mainte-
nance therapy versus prasugrel, there was no difference
observed either in the index of microcirculatory resistance
or in infarct size after 1month. Also, plasma adenosine levels
were not increased in patients treated with ticagrelor.65

Species differences and differences in treatment protocols
may be the reason for the still inconclusive data. Further-
more, the notion of the paradoxical role of platelets in IRI
makes interpreting data from P2Y12 inhibitor studies more
complex to interpret.73 Platelets were shown to exert car-
dioprotective effects, for example, via release of granule
contents or microRNAs, with which P2Y12 receptor antago-
nists may interfere.73

Another reported cardioprotective off-target effect of
ticagrelor during IRI is the inhibition of the multiprotein
platform complex nucleotide-binding oligomerization do-
main (NOD)-like receptor pyrin domain containing 3
(NLRP3) inflammasome.59,71,74,75 TheNLRP3 inflammasome
can induce inflammatory programmed cell death involving
caspase-1 activation leading to cardiomyocyte death.74 A
study in diabetic rats suggested that cardioprotection by
ticagrelor in rats undergoing experimental IRI was partially
attributable to inhibition of the NLRP3 inflammasome. Spe-
cifically, in this study, IR-dependent upregulation of NLRP3
mRNA and interleukin (IL)-1βmRNAwere attenuated by oral
ticagrelor treatment during 3 days before the initiation of
myocardial IR.71 A recently published study by Penna et al
has confirmed and extended this finding using isolated
hearts from nondiabetic rats. The authors showed that the
reduction of infarct size achieved byoral pretreatment of rats
with ticagrelor before isolation of hearts and ex vivo IR
induction is partially mediated by the inhibition of the
NLRP3 inflammasome pathway. Specifically, cardiac protein
levels of NLRP3 were significantly decreased which led to
reduced caspase-1 activation and less IR-induced cardiac
accumulation of active IL-1β. Additionally, with ticagrelor
treatment, the authors also observed an upregulation of the
reperfusion injury salvage kinase (RISK) pathway and a
decrease in IR-induced oxidative stress.59 When directly
administered to the ex vivo heart right before IRI, ticagrelor
lacked its cardioprotective effect. Together with the finding
that ticagrelor enhances release of sphingosine-1 phosphate
(S1P) and adenosine (both cardioprotective substances) from
human platelets in vitro, the authors conclude that the target
of ticagrelor and therebymediators of its protective effect are
most likely platelets.59 S1P and adenosine have both been
shown to exert protective effects by activation of the cardiac
RISK pathway.76
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Glycoprotein IIb/IIIa Receptor

Activation of GPIIb/IIIa (ITGA2B/ITGB3) and binding to fi-
brinogen facilitates stable platelet aggregation and thrombus
formation. The use of GPIIb/IIIa inhibitors such as abciximab
or tirofiban in animal studies has shown this platelet recep-
tor’s importance in the development of cardiac damage
during MI and IRI. In isolated rat hearts, the infusion with
platelets from acute MI patients worsened the myocardial
injury induced by experimental IR. Pretreating these plate-
lets with abciximab reduced the platelet-induced damage, as
measured by improved markers of myocardial injury (maxi-
mal left ventricular [LV] end-diastolic pressure, coronary
resistance, lactate dehydrogenase release, infarct size).58

Interestingly, in addition to interrupting GPIIb/IIIa–fibrino-
gen binding, abciximab also interferes with other mecha-
nisms of platelet adhesion, for example, via the vitronectin
receptor or via leukocyte macrophage-1 antigen (Mac-
1).58,77,78 The effect of GPIIb/IIIa-dependent intracoronary
platelet retention on cardiac outcome was also shown in a
model of low-flow ischemia followed by reperfusion in
isolated guinea pig hearts. In this study, the protective effect
of tirofiban when applied during ischemia was attributed to
blockade of platelet adherence via GPIIb/IIIa–VWF interac-
tion, as no fibrinogen was present in the experimental
system using washed platelets.79 However, no tirofiban
effect on cardiac function was observed when administered
during the reperfusion phase.79 In contrast, a recent study by
Kingma showed that tirofiban, when applied at the time of
myocardial reperfusion in dogs, led to a reduction of tissue
necrosis during reocclusion as well as prolonged occlusion
times.80 Further data supporting a beneficial effect of
GPIIb/IIIa inhibition at reperfusion were reported in IRI in
rats. There, tirofiban mediated its cardioprotective effect by
activating several signaling pathways including activation of
protein kinase C (PKC)ε, phosphatidylinositol 3 (PI3) kinase,
Akt, p38 mitogen-activated protein kinase (MAPK), p42/44
MAPK, and ERK1/2.81 It has not been clarified yet whether
this effect of tirofiban is directly on the myocardium, or
whether the effect was mediated by circulating platelets.
Taken together, these studies indicate that GPIIb/IIIa antag-
onism at the time of reperfusion may limit consequences of
IRI, includingmechanisms that are distinct from inhibition of
platelet adherence.

Glycoprotein VI

The transmembrane protein glycoprotein VI (GPVI) is con-
stitutively associated with the Fc receptor γ (FcRγ) chain,
which contains an immunoreceptor tyrosine-based activa-
tion motif. This complex is commonly known as the platelet
collagen receptor. Platelet activation by collagen through
GPVI is mediated via the tyrosine kinase, Syk. It was shown
that fibrin can also activate platelets via GPVI which
increases thrombin generation and the recruitment of pla-
telets to clots. Consequently, GPVI probably owns a role in
thrombus growth and stabilization.82,83 Interestingly, the
platelet GPVI pathway is dispensable for physiological he-

mostasis but critical for thrombus formation and
growth.84,85 Genetic or pharmacological inhibition of the
GPVI receptor leads to improved outcome aftermyocardial IR
with decreased infarct size in mice. Knockout of the FcRγ
decreased platelet aggregation and occlusive microthrombi,
as well as Syk activation andmyeloperoxidase (Mpo) activity
in a mouse study applying coronary occlusion and reperfu-
sion.86 Anti-GPVI treatment with a monoclonal antibody
significantly reduced infarct size primarily by improving
microperfusion.87 In contrast to the other studies men-
tioned, the treatment with the anti-GPVI antibody in this
study was accompanied by myocardial hemorrhage in a
small subset of mice (two out of nine mice analyzed).87

Based on its minor role in hemostasis and overall promis-
ing data from animal studies, GPVI was suggested as a
promising target for a new class of antiplatelet agents with
reduced risk of bleeding complications compared with other
common antiplatelet drugs.37 This is supported by the notion
that patients with a GPVI deficiency display only a mild or
even no bleeding phenotype.88 Revacept, a soluble GPVI–Fc
fusion protein, that interferes with collagen-mediated plate-
let adhesion and subsequent aggregation was shown to
restore cardiac LV function and reduce infarct size 4 weeks
post-IRI in mice.89 However, in a phase II clinical trial in
stable CAD patients undergoing PCI, the intravenous infusion
of revacept on top of standard antithrombotic therapy
showed no reduction in myocardial injury.90

P-Selectin

Activated platelets express P-selectin on their surface. As an
adhesion molecule, P-selectin plays an important role in
inflammation as it mediates interactions of platelets with
leukocytes, for example, in PLCs. P-selectin knockout mice
and wild-type (WT) mice transfused with P-selectin knock-
out platelets show significantly smaller infarct sizes after
myocardial IR than WT mice.91 Similarly, the pharmacologi-
cal inhibition of platelet P-selectin has beneficial effects on
platelet-mediated reperfusion injury after myocardial IR in
pigs and rats.92,93 The harmful effect of platelet P-selectin is
thought to be mediated by increasing the inflammatory
reaction associated with IRI as P-selectin expression on
platelets increases their adherence to the reperfused endo-
thelium and to leukocytes, thereby enhancing leukocyte
activation and recruitment. However, when interpreting
such data, it must be noted that global P-selectin inhibition
strategies also target endothelial P-selectin and thus ob-
served effects are not solely attributable to platelets.94

Serotonin

The biogenic amine serotonin (5-hydroxytryptamine) exists
in the body in two distinct systems: one as a neurotransmit-
ter in the central nervous system and the other as a hormone
in the periphery. Peripheral serotonin is synthesized by
tryptophan hydroxylase isoform 1 (Tph1) in the gut and is
stored in high concentrations in dense granules of platelets.
Platelet activation during acute MI leads to the release of
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serotonin.95,96 The inhibition of serotonin receptors, platelet
serotonin uptake, or serotonin production was shown to
improve outcome after experimental IRI.95–98 Mechanisti-
cally, serotoninwas first believed to indirectly worsen IRI via
oxidative stress caused by its enzymatic degradation via
mitochondrial monoamine oxidase A that leads to H2O2

production.98Our group found recently that platelet-derived
serotonin induces neutrophil degranulation leading to the
release of Mpo and H2O2 from neutrophils. Additionally,
serotonin enhances the surface expression of CD11b on
neutrophils leading to their enhanced recruitment. As a
consequence, serotonin worsened inflammation in the in-
farct tissue and thereby myocardial damage.96

The notion that serotonin is elevated after acute MI and
associated with IRI96,99,100 leads to the speculation that this
biogenic amine could serve as a biomarker for IRI. In a study
by Rieder et al, it was investigated whether serum serotonin
has a diagnostic potential in acute MI and to predict IR.
However, serum serotonin concentration did not show an
association with the severity of CAD or the extent of IRI.101

Reactive Oxygen Species

ROSs are generated by cellular oxidative metabolism (e.g.,
NADPH oxidase and the electron transport chain in mito-
chondria). These molecules are highly reactive and impor-
tant for cell signaling. However, an imbalance between ROS
production and antioxidant mechanisms results in oxidative
stress which is implicated in the pathogenesis of cardiovas-
cular disease.102,103 Myocardial I/R increases ROS genera-
tion. Importantly, in this context platelets are both source
and target of ROS.104 ROSs are involved in the regulation of
platelet activation, aggregation, and recruitment.104 NAD(P)
H oxidase isoforms are the main sources of ROS in platelets,
followed by COX, xanthine oxidase, and mitochondrial res-
piration.104 Early studies showed that platelets are activated
by intrinsically generated superoxide anion and hydroxyl
radicals after they had undergone anoxia and reoxygena-
tion.105 Studies on guinea pig hearts revealed that ROS
released by platelets can cause IRI independent from mere
intracoronary platelet adhesion.79,103,106 ROS can harm the
reperfused myocardium, for example, by damaging mem-
branes and proteins or by opening of the mitochondrial
permeability transition pore and subsequently causing apo-
ptosis.20,106 In the microcirculation, the I/R-related increase
in ROS production induces adhesive qualities of the endo-
thelial surface.41 Furthermore, ROS production activates the
complement system in IRI. It was recently shown that the
complement C3a receptor expressed on platelets modulates
platelet aggregation.107 Together, the interplay of different
sources of ROS and their procoagulant effect on platelets
generates a vicious circle that affects different cell types in IRI
and contributes to disease progression.104

Platelet-Activating Factor

Platelets (aswell as leukocytes and endothelial cells) produce
the phosphoglyceride platelet-activating factor (PAF) which

can exert autocrine and paracrine effects, for example, on
cardiomyocytes, endothelial cells, and platelets.108 Large
amounts of PAF are released during IR and can exert negative
effects on the heart, including arrhythmias.76,109,110 PAF
mediates these effects through the activation of inflamma-
tory cells like platelets and neutrophils.108 Inhibiting the PAF
receptor was shown to mitigate myocardial IR.111,112 In an
early study by Ko et al, it was demonstrated that administra-
tion of a specific PAF receptor antagonist immediately before
reperfusion in an intact sheep model reduces myocardial
reperfusion injury—an impact which was attributed to re-
duced reperfusion-dependent platelet and neutrophil activa-
tion.112 Inmice, the beneficial effect of PAF receptor deficiency
was also shown to bemediated by reduced inflammation, but
also by reduced oxidative stress.111 Furthermore, it is known
that PAF stimulates theNaþ/Hþ exchanger isoform1 (NHE1) in
platelets.113 NHE1 is a membrane protein that removes intra-
cellular Hþ, thereby protecting cells from intracellular acidifi-
cation, and contributes to platelet activation.113,114 NHE1
inhibition before the onset of myocardial ischemiawas shown
to reduce infarct size in rats.115 However, in a clinical trial
evaluating the cardioprotective effects of eniporide, a selective
inhibitor of the humanNHE1, in patientswith acute STEMI, no
reduction in infarct size or improvement in clinical outcome
was observed.116

Paradoxically, PAF also exerts cardioprotective effects in
picomolar concentrations. The underlying mechanisms in-
volve the activation of the RISK pathway, including protein
kinase C, Akt, and nitric oxide synthase.108,117

Heterocellular Interactions

Platelets exert many of their effects during IRI in the form of
heterocellular interactions, for example, with endothelial
cells or leukocytes. A special kind of platelet–leukocyte
interactions are PLCs. Platelet–neutrophil (PNCs) and plate-
let–monocyte complexes (PMCs) are increased in blood from
patients suffering from acute MI and their formation is
believed to aggravate inflammatory tissue injury.30,118,119

Mechanistically, the formation of PLC leads to activation of
both of the involved cell types and triggers cytokine release
as well as adhesion molecule and cell surface receptor
exposition.120,121 PLC formation is also thought to facilitate
extravasation of leukocytes.122,123

In ex vivo studies applying experimental IRI on isolated
hearts, the simultaneous perfusion with both neutrophils
and platelets, as compared with perfusion with either pla-
telets or neutrophils, worsened cardiac functions in isolated
rat and guinea pig hearts. The harmful effects were shown to
be inhibitable by interrupting PNC formation.124–126 The
formation of PLC is initiated by interactions between P-
selectin and P-selectin glycoprotein ligand-1 and subsequent
interactions between GPIb and Mac-1 that stabilize the
intercellular adhesion.123,127 Several in vivo studies on dif-
ferent species showed that cardiac outcome after IRI can be
improved by neutralization of P-selectin,92,93,128 which
resulted in less neutrophil infiltration and platelet–neutro-
phil adhesion in the infarcted heart tissue.
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Conflicting results on the functional relevance of PLC in IRI
were reported, too. A study on isolated guinea pig hearts by
Seligmann et al did not find an additional effect in the
combined presence of platelets and neutrophils over the
presence of only one cell type alone, questioning a causative
role of PLC in IRI.129 Furthermore, in a conference abstract,
Starz et al reported that mice carrying a selective deletion of
platelet P-selectin (P-selectin�/� bone marrow chimeras)
display a blunted surge in circulating PLC after induction
of experimental myocardial IRI. However, this did not result
in any differences in infarct size, tissue inflammation, or
long-term ejection fraction in comparison to P-selectin WT.
As an explanation for unaltered cardiac outcome, the authors
found unaffected leukocyte extravasation in the platelet P-
selectin knockoutmice as observed via intravitalmicroscopy.
These results challenge the prevailing opinion about a path-
ogenic function of PLC in MI.130

During IRI, platelets are triggered by the injured endothe-
lium, but the interaction also works vice versa. Activation
and adhesion of platelets is accompanied by the release of
numerous proinflammatory and pro-mitogenic substances
which alter chemotactic, adhesive, and proteolytic proper-
ties of endothelial cells.27 In the context of IRI, it was shown
that inhibiting GPVI-dependent interaction of platelets and
endothelial cells improves cardiac function and reduces
infarct size in mice. This was due to attenuated platelet
degranulation and proinflammatory cytokine release which
resulted in less inflammation of the infarctedmyocardium.89

Other mechanisms of platelet-dependent alterations of the
endothelial inflammatory phenotype involve platelet CD40
ligand.131 Furthermore, IR-dependent platelet–neutrophil
interactions result in enhanced P-selectin expression on
the coronary microvascular endothelium.124

Reticulated Platelets

In the existing studies on IR damage, the platelet population
was mainly considered as a homogeneous whole. Yet, the
specific contribution of platelet subpopulations is still very
unclear. Platelets have a limited life span of 8 to 10 days in
humans; therefore, they must be constantly renewed by the
organism. This process of thrombopoiesis can be strongly
stimulated in the context of inflammatory reactions, which
leads to an increased proportion of young platelets being
found in the circulation.132,133 These newly formed platelets
have been named “reticulated platelets” because they pos-
sess remnants of rough endoplasmic reticulum and ribo-
somes.134 Reticulated platelets differ from regular platelets
by increased RNA content, higher volume and more dense
granules, higher levels of surface activation markers, and
probably increased reactivity.135–137 Elevated levels of retic-
ulated platelets have been associated with a higher risk of
major adverse cardiovascular events and a higher risk of
death in patients with acute coronary syndromes.138–140 It
was shown that reticulated platelets are increased fourfold in
patients with STEMI compared with control patients.132

Interestingly, reticulated platelets were even shown to be
especially elevated in STEMI patients compared with other

types of acute coronary syndromes.133 It is not clear from
these studies whether reticulated platelets are a mere mark-
er of disease or whether they actively contribute to disease
progression. But an indication of the latter is the discovery
that reticulated platelets respond worse to the standard
antiplatelet agents such as aspirin and thienopyridine
P2Y12 antagonists.137 In the respective study, patients un-
dergoing elective PCI were randomized to clopidogrel, low-
dose prasugrel, or standard-dose prasugrel. Reticulated
platelet levels in the blood of patients (measured as imma-
ture platelet count) correlated with impaired platelet re-
sponse to the ADP receptor antagonist therapy.137 In
addition, similar associations were observed at the time
points of peak active metabolite levels of clopidogrel and
prasugrel, suggesting that intrinsic properties of reticulated
platelets rather than platelet turnover itself contribute to
their impaired response to antiplatelet agents.141 Whether
reticulated platelets represent a potential therapeutic target
in myocardial IRI remains to be investigated in detail.

Platelets in Tissue Remodeling after IRI
The inflammatory phase of cardiac repair after IRI is followed
by a reparative phase which has the task to resolve inflam-
mation and enable (myo)fibroblast proliferation, scar forma-
tion, and neovascularization.142 A finely balanced tissue
remodeling process is needed for the recovery of cardiac
function after MI.142 Among the known mediators of fibro-
blast expansion and trans-differentiation to myofibroblasts
are serotonin, transforming growth factor (TGF)-β1, and
platelet-derived growth factor.143 All of these are abundant
in platelet granules. Platelet-derived TGF-β1 was shown to
contribute to cardiac fibrosis and dysfunction in response to
pressure overload.143A study from2014 indicates a potential
role of platelet TGF-β1 in acute coronary syndrome as well as
a prognostic value of TGF-β1 on clinical outcomes in
patients.144 Another molecule enriched in platelet α-gran-
ules is thrombospondin-1 (TSP-1). TSP-1 was shown to
negatively regulate myofibroblast density and infiltration
into noninfarcted areas.143 Together, fibroblast activation in
cardiac healing must be finely tuned and also spatially and
temporally limited to prevent adverse remodeling. Platelets
might play a central role in this complex regulatory
mechanism.143

The regulation of vascularization by platelets is multifac-
eted as well. Several pro-angiogenic (e.g., stromal cell-de-
rived factor-1α) and antiangiogenic factors (e.g., PF4) are
stored in distinct subpopulations of platelet α-granula from
where they are released differentially in response to specific
agonists.145,146 A recent publication shows an interplay
between platelets and the complement system in angiogen-
esis. The authors demonstrate that activation of the platelet
C5a receptor 1 inhibits collateral artery formation in ische-
mia-induced revascularization as well as capillary formation
and pericyte coverage through the release of PF4.147 Platelet-
dependent modulation of angiogenesis after myocardial IRI
seems to be yet another potential pharmaceutical target and
is worth to be considered when evaluating antiplatelet
strategies in MI.
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Conclusion

The mechanisms underlying the pathophysiology of IRI as
well as their individual contribution to its progression are to
date not fully elucidated. A crucial role of platelets in the
course of IRI has been convincingly described in recent years.
In vivo and ex vivo studies applying experimental MI in
different species showed cardioprotective effects through
the inhibition of platelet receptors, adhesion molecules, and
certain components of the platelet releasate. However, sin-
gle-agent approaches targeting platelet-related mechanisms
that effectively prevent IRI have not yet entered clinical
practice. Therefore, an improved understanding of platelet
contributions to IRI is necessary to develop newand effective
treatment strategies and further improve the condition of
the reperfused myocardium.
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