Synthesis 2022; 54(13): 3055-3068
DOI: 10.1055/a-1747-5457
paper

Base/B2pin2-Mediated Iodofluoroalkylation of Alkynes and Alkenes

,
Chenyu Wang
,
Zhongjie Wang
,
Hongjun Li
,
Ruyan Liu
,
Yan Wang
,
Pengsheng Zhou
,
Dianjun Li
,
Jinhui Yang
We acknowledge the National Natural Science Foundation of China (Grant nos. 21861031, 21362025), Institute Local Cooperation Project of the Chinese Academy of Engineering (2019NXZD1), Key Research and Development Program of Ningxia (022104030009, 2021BEG02001, 2021BEE03003), and National First-rate Discipline Construction Project of Ningxia (Chemical Engineering and Technology) (NXYLXK2017A04).


Abstract

A base/B2pin2-mediated iodofluoroalkylation of alkynes and a part of alkenes, using ethyl difluoroiodoacetate (ICF2CO2Et) or ICnF2n+1 (n = 3, 4, 6) as difluoroacetylating or perfluoroalkylating reagent, is disclosed. The reaction proceeds under mild conditions, and iododifluoroalkylation, hydrodifluoroalkylation and several perfluoroalkylation products were generated from alkynes or alkenes. Notably, this methodology provides a simple access to difluoroalkylated and perfluoroalkylated organic compounds starting from simple alkynes or alkenes.

Supporting Information



Publication History

Received: 18 November 2021

Accepted after revision: 21 January 2022

Accepted Manuscript online:
21 January 2022

Article published online:
19 May 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Shimizu M, Hiyama T. Angew. Chem. Int. Ed. 2005; 44: 214
    • 2b Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 2c Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 2d Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
    • 2e Ilardi EA, Vitaku E, Njardarson JT. J. Med. Chem. 2014; 57: 2832
    • 2f Landelle G. Curr. Top. Med. Chem. 2014; 14: 941
    • 2g Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. J. Med. Chem. 2015; 58: 8315

      Transition-metal-catalyzed fluoroalkylation of arenes methodologies:
    • 4a Wu GJ, von Wangelin A. Chem. Sci. 2018; 9: 1795
    • 4b Xu T, Cheung CW, Hu XL. Angew. Chem. Int. Ed. 2014; 53: 4910
    • 4c Li G, Cao YX, Luo C, Su G. Org. Lett. 2016; 18: 4806
    • 4d Li G, Wang T, Fei F, Su Y.-M, Li Y, Lan Q, Wang X.-S. Angew. Chem. Int. Ed. 2016; 55: 3491
    • 4e Xiong H, Li Y, Qian B, Wei R, Van der Eycken EV, Bao H. Org. Lett. 2019; 21: 776
    • 4f Zhang PB, Ying JX, Tang G, Zhao YF. Org. Chem. Front. 2017; 4: 2054
    • 4g Li DK, Mao TT, Huang JB, Zhu Q. J. Org. Chem. 2018; 83: 10445
    • 4h Feng XR, Wang XY, Chen HT, Tang XY, Guo MJ, Zhao WT, Wang GW. Org. Biomol. Chem. 2018; 16: 2841
    • 4i Deng W, Li Y, Li Y.-G, Bao H. Synthesis 2018; 50: 2974

      Visible-light-catalyzed fluoroalkylation of arenes methodologies:
    • 5a Wallentin CJ, Nguyen JD, Finkbeiner P, Stephenson CR. J. J. Am. Chem. Soc. 2012; 134: 8875
    • 5b Zhong JJ, Yang C, Chang XY, Zou C, Lu W, Che CM. Chem. Commun. 2017; 53: 8948
    • 5c Mizuta S, Verhoog S, Engle KM, Khotavivattana T, O’Duill M, Wheelhouse K, Rassias G, Médebielle M, Gouverneur V. J. Am. Chem. Soc. 2013; 135: 2505
    • 5d Iqbal N, Jung J, Park S, Cho EJ. Angew. Chem. Int. Ed. 2014; 53: 539
    • 5e Rawner T, Lutsker E, Kaiser CA, Reiser O. ACS Catal. 2018; 8: 3950
    • 5f Yu C, Iqbal N, Park S, Cho EJ. Chem. Commun. 2014; 50: 12884
    • 5g Yajima T, Ikegami M. Eur. J. Org. Chem. 2017; 2126
    • 5h Li LX, Ma YN, Tang M, Guo J, Yang Z, Yan YZ, Ma XT, Tang L. Adv. Synth. Catal. 2019; 361: 3723
    • 5i Liu Y, Chen XL, Sun K, Li XY, Zeng FL, Liu XC, Qu LB, Zhao YF, Yu B. Org. Lett. 2019; 21: 4019
    • 5j Zeng FL, Sun K, Chen XL, Yuan XY, He SQ, Liu Y, Peng YY, Qu LB, Lv QY, Yu B. Adv. Synth. Catal. 2019; 361: 5176

      Radical initiator catalyzed fluoroalkylation of arenes methodologies:
    • 6a Fang X, Yang XY, Yang XJ, Mao SJ, Wang ZH, Chen GR, Wu FH. Tetrahedron 2007; 63: 10684
    • 6b Motoda D, Kinoshita H, Shinokubo H, Oshima K. Adv. Synth. Catal. 2002; 344: 261
    • 6c Jennings MP, Cork EA, Ramachandran PV. J. Org. Chem. 2000; 65: 8763
    • 6d Li Y, Li H, Hu J. Tetrahedron 2009; 65: 478
    • 6e Wang DF, Wu JJ, Huang JW, Liang JQ, Peng P, Chen H, Wu FH. Tetrahedron 2017; 73: 3478
    • 7a Domański S, Chaładaj W. ACS Catal. 2016; 6: 3452
    • 7b Guo WH, Zhao HY, Luo ZJ, Zhang S, Zhang X. ACS Catal. 2019; 9: 38
  • 8 Wang S, Zhang J, Kong L, Tan Z, Bai Y, Zhu G. Org. Lett. 2018; 20: 5631
  • 9 Guo W.-H, Zhao H.-Y, Luo Z.-J, Zhang S, Zhang X. ACS Catal. 2019; 9: 38
  • 10 Ma J.-J, Yi W.-B. Org. Biomol. Chem. 2017; 15: 4295
  • 11 Li X, He S, Song Q. Org. Lett. 2021; 23: 2994
  • 12 Li K, Zhang X, Chen J, Gao Y, Yang C, Zhang K, Zhou Y, Fan B. Org. Lett. 2019; 21: 9914
  • 13 Ji Y.-X, Wang L.-J, Guo W.-S, Bi Q, Zhang B. Adv. Synth. Catal. 2020; 362: 1131
    • 15a Zhang H, Song Y, Zhao J, Zhang J, Zhang Q. Angew. Chem. Int. Ed. 2014; 53: 11079
    • 15b Parkin G. Organometallics 2006; 25: 4744
    • 15c Ilchenko NO, Janson PG, Szabó KJ. Chem. Commun. 2013; 49: 6614
    • 15d Moret ME, Zhang L, Peters JC. J. Am. Chem. Soc. 2013; 135: 3792
    • 16a Xiao Y, Chun YK, Cheng SC. Org. Biomol. Chem. 2020; 18: 8686
    • 16b Mao T, Ma M.-J, Zhao L, Xue D.-P, Yu Y, Gu J, He C.-Y. Chem. Commun. 2020; 56: 1815
  • 17 Rao M, Wei Z, Yuan Y. ChemCatChem 2020; 12: 5256
  • 18 Rao M, Wei Z, Yuan Y. Tetrahedron Lett. 2020; 61: 152558
    • 20a Cheng Y, Mück-Lichtenfeld C, Studer A. Angew. Chem. Int. Ed. 2018; 57: 16832
    • 20b Zhu S, Yang H, Jiang A. J. Org. Chem. 2020; 85: 15667
    • 20c Guo A, Han JB, Tang XY. Org. Lett. 2018; 20: 2351
    • 20d Liu Q, Hong J, Sun BT. Org. Lett. 2019; 21: 6597
    • 20e Li Z, Wang Z, Zhu L. J. Am. Chem. Soc. 2014; 136: 16439
    • 20f Zhang L, Zuo Z, Leng X. Angew. Chem. Int. Ed. 2014; 53: 2696
    • 20g Pereira S, Srebnik M. J. Am. Chem. Soc. 1996; 118: 909
    • 20h Wang G, Cao J, Gao L. J. Am. Chem. Soc. 2017; 139: 3904
    • 20i Liu C, Yang YJ, Dong JY. J. Org. Chem. 2019; 84: 9937
    • 20j Wang S, Lokesh N, Hioe J. Chem. Sci. 2019; 10: 4580
    • 20k Yan G, Huang D, Wu X. Adv. Synth. Catal. 2018; 360: 1040
    • 20l Zhou S, Yuan F, Guo M. Org. Lett. 2018; 20: 6710
    • 20m Xuan Q, Song Q. Org. Lett. 2016; 18: 4250
    • 20n Kuang Z, Yang K, Zhou Y. Chem. Commun. 2020; 56: 6469