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Introduction
The growing obesity pandemic is one of the biggest health prob
lems in the 21st century that gives rise to multiple comorbidities 
such as cancer or neurodegenerative diseases and thus dramati
cally increases mortality [1–3]. In the western world, excessive food 
intake beyond physiological needs as well as reduced physical acti
vity are well established as main causes promoting obesity. How
ever, the underlying mechanisms instigating this maladaptive be
havior, which disregards or overrides homeostatic needs, are poorly 

understood. In everyday life, we constantly make decisions and 
adapt our behavior to our physiological needs and the surrounding 
environment – e. g., we decide to go to the bakery across the street 
to get a delicious sandwich avoiding lunch in the inhouse cafeteria. 
To ensure our physiological homeostasis and to adapt our behavio
ral responses, our brain constantly integrates information about 
the metabolic state (e. g., hunger) with external environmental 
cues (bakery vs. inhouse cafeteria). External cues can comprise 
vary ing motivational signals, which include the incentive value of 
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ABSTR ACT

Excessive food intake and reduced physical activity have long 
been established as primary causes of obesity. However, the 
underlying mechanisms causing this unhealthy behavior char
acterized by heightened motivation for food but not for physi
cal effort are unclear. Despite the common unjustified stigma
tization that obesity is a result of laziness and lack of discipline, 
it is becoming increasingly clear that highfat diet feeding and 
obesity cause alterations in brain circuits that are critical for 
the control of motivational behavior.
In this minireview, we provide a comprehensive overview of 
incentive motivation, its neural encoding in the dopaminergic 
mesolimbic system as well as its metabolic modulation with a 
focus on derangements of incentive motivation in obesity. We 
further discuss the emerging field of metabolic interventions 
to counteract motivational deficits and their potential clinical 
implications.
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an expected reward (delicious sandwich vs. cafeteria lunch) but 
also the effort required to obtain the reward (distant bakery across 
the street vs. close inhouse cafeteria). Thus, everyday decisions in 
favor of or against food intake are based on cost-benefit analyses 
weighing the potential food reward against the cost of spending 
effort to obtain it.

The incentive theory of motivation regards motivational behav
ior to mainly depend on anticipated rewards and reinforcement; 
hence, incentive motivation refers to the processes that translate 
expected reward into the effort spent to obtain the reward [4–6]. 
Importantly, the subjective valuation of the magnitude of a reward 
depends on our internal state; a sandwich is regarded as more val
uable in a hungry than a sated state [7]. Consequently, our moti
vation depends on the capacity of our brain to integrate internal 
state signals (hunger) with environmental cues (distance to bake
ry, value of sandwich) to guide our behavior.

There is increasing evidence that highfat diet consumption and 
obesity perturbate the underlying neural processes leading to mal
adaptive behavior and motivational deficits. This mini-review aims 
to give a short overview of incentive motivation, its neural encod
ing in the dopaminergic mesolimbic system and its metabolic reg
ulation with a focus on derangements of incentive motivation in 
obesity as one mechanism underlying excessive food intake and 
reduced physical activity. We further give an outlook on the emerg
ing field of metabolic interventions to counteract motivational defi-
cits and their potential clinical implications.

Encoding of incentive motivation in the 
dopaminergic midbrain
Incentive motivation is encoded by the mesolimbic dopaminergic 
system. Dopaminergic neurons projecting from the ventral teg
mental area (VTA) to the nucleus accumbens (NAc) encode both 
rewarddriven learning and motivation to work for reward [8, 9]. 
Learning signals are encoded by phasic dopamine release in the 
NAc. On the other hand, dopamine release ramps up when we ap
proach a reward reflecting reward expectancy [10]. The amount of 
dopamine, that is released during this rampingup phase, provides 
information about the value of the anticipated reward and moti
vates the amount of effort required to obtain it [11–13]. While our 
understanding of the differential functions of dopamine in reward 
learning and motivation are mainly derived from animal studies, 
human brain imaging studies support these results, as changes in 
the activity of the NAc were observed to correlate with the subjec
tive value of rewards and its anticipation [12, 14, 15]. Likewise, 
human pharmacological intervention studies lowering dopamin
ergic tone have provided evidence for lower effort spending and 
motivation [16–18].

Motivation in obesity – inconclusive results
In obese humans, alterations in the frontomesolimbic dopamine 
system (in particular within the dopaminergic projections from the 
VTA to the NAc) are related to an impaired reward system [19, 20]. 
A highfat diet – interestingly even in the absence of obesity – in
duces downregulation of dopaminergic D2 receptors as de
scribed in animal studies [21, 22]. On a functional level, highfat 

diet  consumption also causes a devaluation of standard chow diet, 
which is encoded by reduced dopamine release from the VTA upon 
receival of standard food (amongst encoding by hypothalamic 
agoutirelated peptide neurons), and thus diminishes the reward
ing properties of food discovery [20]. In humans, the direct impact 
of a highfat diet on the mesolimbic system in the absence of obe
sity has not been studied yet. The data comparing obese and 
healthy weight participants is consistent with the abovementioned 
animal literature. Human positron emission tomography (PET) 
studies revealed a negative correlation between body mass index 
(BMI) and striatal D2 receptor density or binding potential in obese 
and overweight humans [23, 24]. This reduced binding potential 
of striatal dopamine receptors seems to be associated with an al
tered striatal dopaminergic tone leading to an imbalance of antic
ipation and consumption of food reward [25, 26]. In comparison to 
lean individuals, humans with obesity show increased neural acti
vation of the NAc when anticipating a reward but experience less 
activation of reward circuits from the actual food reward consump
tion [23, 27]. These changes in D2 receptor binding potential seem 
to be partly reversible by bariatric surgeryinduced longterm 
weight loss [28–30]. In animals, bariatric surgery even seems to 
change the motivation for drug rewards via postsurgical increases 
in bile acid signaling, which reduces accumbal dopamine [31]. How
ever, only little is known about incentive motivation in obese hu
mans and findings portray a heterogeneous picture of effort spend
ing in obesity.

Mathar et al. [32] assessed motivational differences between 
lean and obese humans in a cost-benefit decision-making para
digm, in which participants had to exert physical effort on a hand
grip to win food and nonfood reward. Obese participants were less 
willing to engage in physical effort in particular for high-caloric 
sweet snack food. In contrast, Epstein et al. as well as Giesen et al. 
suggest that obese humans may be willing to invest more effort to 
obtain highcaloric food than lean individuals [33, 34].

Metabolic modulation of the dopaminergic 
midbrain – animal results
These studies might rest upon incomplete assumptions about mod
ulatory influences on midbrain dopaminergic function, as VTA dopa
minergic neurons are not only involved in reward learning and moti
vation but are also sensitive to nutritional signals [35], postingestive 
effects of food [36, 37], and metabolic state signaled by peptidergic 
mediators [38–40]. Many orexigenic agents (such as Ghrelin) and 
postprandial anorexigenic peptides (such as glucagonlike peptide 1 
(GLP1), insulin or leptin) or their agonists can bind to receptors on 
dopaminergic neurons of the VTA/Nac [41] and hence modulate do
paminergic performance upon their activation affecting motivation
al behavior. In line, animal studies reveal that the hunger hormone 
ghrelin applied directly into the VTA increases dopamine levels in the 
NAc and thus induces motivational behavior for food rewards [42–
45]. Correspondingly, in a state of overnight fasting with high endog
enous levels of ghrelin, ghrelin receptor blockade in the VTA reduces 
the motivation to work for food reward [46, 47]. However, the effect 
of ghrelin on motivation seems to depend on the surrounding envi
ronmental cues. In a classical place preference task in rodents, pe
ripheral injection of ghrelin in the absence of food-induced aversive 
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behavior [48], while in the presence of food, ghrelin instigated con
ditioned place preference [44, 48]) indicating that the interplay of en
dogenous metabolic signals and environmental perception shapes 
adaptive motivational behavior.

Contrary to ghrelin, postprandial hormones such as insulin or 
GLP1 reduce motivated behavior for food rewards in mice by 
downregulating dopaminergic transmission [49]. Specifically, in
sulin action on dopaminergic VTA neurons depresses excitatory 
synaptic transmission [50], decreases dopamine concentrations by 
enhancing its clearance [51, 52], and reduces dopamine release 
into the NAc [53]. GLP1 (and its analogues) reduces phasic dopa
mine release of VTA dopaminergic neurons in response to reward
indicating cues and attenuates synaptic drive onto mesolimbic do
pamine neurons [54–56]. Amylin (and its receptor agonists), also 
seems to affect dopaminergic neurons in the VTA, reducing phasic 
dopamine action in the NAc and consequently food intake [57, 58]. 
Its complete role as a modulator of dopaminergic activity and 
hence motivation still requires further investigation with first data 
revealing an attenuating effect of Amylin receptor agonists on the 
rewarding properties of alcohol [59]. Similarly, the adipocytokine 
leptin, which circulates in proportion to body fat to signal the re
pletion of longterm energy stores, expresses its receptor on VTA 
dopaminergic neurons. However, ablation of these leptin receptors 
does not alter motivational behavior but increases anxietylike be
havior (as these neurons mainly project to the amygdala, which is 
highly implicated in anxiety) [60, 61]. Nonetheless, leptin reduces 
motivational behavior for food. The mode of action seems to be 
more indirect, however, with leptin receptorbearing neurons of 
the lateral hypothalamus, decreasing mesolimbic dopaminergic 
function as a consequence of increased dopamine uptake in the 
NAc [62].

Collectively, the orexigenic peptide ghrelin seems to enhance 
motivational behavior in rodents by upregulating dopaminergic 
transmission in the mesolimbic system, whereas postprandial and 
anorexigenic peptides (such as insulin, GLP1, leptin, and probably 
amylin) have the opposite effect on dopaminergic function and 
motivation[63]. However, the food itself, which is used as a rein
forcer in motivational paradigms, exerts a time-dependent effect 
on dopamine release with an immediate orosensory and delayed 
postingestive dopaminergic response [37]. Considering the mul
titude and complexity of modulatory influences on the dopamin
ergic mesolimbic system, the aboveportrayed roles of peptidergic 
hormones in the regulation of motivation might be multifaceted 
with varying effects depending on nutritional/metabolic state.

Metabolic modulation of motivational 
behavior in humans and its derangements in 
obesity

While the modulatory effect of metabolic peptides on the dopa
minergic neurocircuitry and motivational behavior is well docu
mented in rodents, evidence for a modulatory role of peripheral 
peptides or metabolic state affecting motivational behavior in hu
mans is scarce. We, therefore, set up a randomized, placebocon
trolled study to assess the effect of GLP-1 on motivation in lean and 

obese individuals while capturing their metabolic state, i. e., their 
hunger level and insulin sensitivity. Participants exerted force on a 
handgrip to win food and monetary rewards. We could show that 
hunger increases incentive motivation in lean humans but not in 
obese humans indicating that motivational irregularities in obesity 
are state-dependent. We further observed that the effect of hun
ger on incentive motivation is modulated by the peripheral insulin 
sensitivity of the individual with impaired peripheral insulin sensi
tivity reducing the motivational effect of hunger [64]. These results 
are in line with previous studies showing that altered insulin sensi
tivity impacts dopaminergic projections of the midbrain and de
note a dysfunctional integration of metabolic signals and external 
cues within the mesolimbic system as the foundation of impaired 
motivational drive in obesity [65]. The aforementioned heteroge
neous results about incentive motivation in obese humans show
ing both increased and decreased effort spending for rewards might 
thus be a consequence of neglecting metabolic state, in particular, 
insulin sensitivity and fasting time/hunger. We further demonstrate 
that administration of the GLP1 analogue liraglutide normalizes 
the motivational effect of hunger in insulin-resistant humans. Most 
importantly, this holds true for both food and monetary reward, 
indicating that the modulatory effect of GLP-1 on motivational be
havior exceeds a mere food scenario and might prove beneficial in 
other disorders with motivational deficits [64].

Outlook: Metabolic treatment of motivational 
deficits in psychiatric diseases
As GLP1 normalized motivation in insulinresistant humans but 
did not affect motivation in insulin sensitive participants, GLP-
1(analogues) might comprise therapeutic potential for motivation
al dysfunctions in dopaminergic disorders, which are associated 
with metabolic impairments such as insulin resistance. Insulin re
sistance is a shared abnormality among many patients with type 2 
diabetes mellitus and major depression [66] hence, GLP-1 could be 
cautiously hypothesized to improve dopaminergic functioning in 
depression and hence depressive symptom burden in patients suf
fering from both depression and insulin resistance. Furthermore, 
GLP1 receptor polymorphism has been associated with anhedo
nia – the lack of motivation, which is a core symptom of depres
sion. In a first meta-analysis, treatment of diabetic patients with 
GLP-1 analogues resulted in a significant reduction of depression 
scores [67]. However, this metaanalysis is based on eight publica
tions only with heterogeneous cohorts so that the result must be 
interpreted with caution. While the GLP1 analogue Liraglutide is 
already approved as weight loss medication in Germany [68], ran
domized controlled clinical trials on the efficacy and safety of GLP-1 
analogues as a treatment for motivational deficits in diabetic or in
sulin-resistant patients suffering from depression are lacking.

In animal studies, GLP-1 also reduces the reinforcing efficacy of 
drugs of abuse so that a potential therapeutic benefit of GLP-1 ana
logues could also be suspected for detoxification therapies [69]. For 
instance, GLP1 analogues were shown to reduce cocaine, amphet
amine, alcohol, and nicotine use in animals [70]. Interventional stud
ies in humans are fervently awaited.
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Summary
In summary, both external cues and internal state signals are inte
grated into the dopaminergic mesolimbic system to guide our eve
ryday motivational behavior (see ▶Fig. 1). Dopamine release in the 
NAc ramps up as a reward approaches, encoding reward expectancy. 
Metabolic peptide hormones – such as insulin, GLP1, leptin, or ghre
lin – modulate dopaminergic transmission thus regulating motiva
tional behavior, that is, hunger augments motivation to exert effort 
for rewards. In obesity, insulin resistance reduces the motivational ef
fect of hunger, indicating that a dysfunctional integration of meta
bolic signals with external cues seems to lead to derangements of in
centive motivation representing one possible mechanism underlying 
excessive food intake and reduced physical activity in obesity. Con
comitantly, interventions with metabolic messengers offer new op
portunities to reverse motivational deficits. In obese humans, for ex
ample, intervention with GLP1 normalizes motivational behavior. 

Future clinical research directions should therefore include the safety 
and efficacy of clinical interventions with metabolic mediators in pa
thologies associated with motivational insufficiencies.
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