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ZUSAMMENFASSUNG

Hintergrund Das Perfusions-MRT stellt eine etablierte Bild-

gebungsmodalität mit einer Vielzahl von Anwendungen in

der onkologischen, neurovaskulären oder kardiovaskulären

Bildgebung dar. Die mittlerweile klinisch etablierten quantita-

tiven Auswertemethoden haben sich in den letzten Jahren

jedoch wenig geändert. Dies liegt vorrangig an den geringen

Verbesserungen, die durch neue Verfahren erzielt werden

konnten.

Ergebnisse und Schlussfolgerung Machine Learning und

Deep Learning, die derzeit den state of the art der computer-

gestützten Diagnoseverfahren darstellen, haben das Potenzial

die vielfältige Information, die in perfusionsgestützter Bildge-

bung akquiriert wird, vollständig besser als bisher zu erfassen

und zu nutzen. Rekurrente neuronale Netze können nach

entsprechendem Training Zeitserien mit hoher Genauigkeit

vorhersagen und klassifizieren. Speziell die Kombination aus

mikrostrukturellen Gewebsmodellen und Deep Learning mit-

tels physics-informed neural networks oder universal differen-

tial equations vereinfacht kann das das Training der Modelle

vereinfachen und die Interpretabilität verbessern. Aufgrund

ihrer vielseitigen Anwendbarkeit ist es möglich, dass diese

Methoden in der Lage sein werden, das Wechselspiel zwischen

der mikrovaskulären Architektur und Perfusionsparametern

besser zu modellieren. Weitere Forschung in diesem Gebiet ist

dringend notwendig, um diese Methoden für die klinische

Arbeit einsatzfähig zu machen.

Kernaussagen:
▪ Machine Learning-Methoden bieten vielversprechende

Möglichkeiten zur Auswertung von Perfusionsdaten.

▪ Rekurrente neuronale Netze können Zeitserien mit hoher

Genauigkeit klassifizieren.

▪ Data augmentation ist besonders bei kleinen Datensätzen

essentiell.

ABSTRACT

Background Perfusion MRI is a well-established imaging

modality with a multitude of applications in oncological and

cardiovascular imaging. Clinically used processing methods,

while stable and robust, have remained largely unchanged in

recent years. Despite promising results from novel methods,

their relatively minimal improvement compared to estab-

lished methods did not generally warrant significant changes

to clinical perfusion processing.

Results and Conclusion Machine learning in general and

deep learning in particular, which are currently revolutionizing

computer-aided diagnosis, may carry the potential to change

this situation and truly capture the potential of perfusion ima-

ging. Recent advances in the training of recurrent neural net-

works make it possible to predict and classify time series data

with high accuracy. Combining physics-based tissue models

and deep learning, using either physics-informed neural net-

works or universal differential equations, simplifies the train-

ing process and increases the interpretability of the resulting

models. Due to their versatility, these methods will potentially

be useful in bridging the gap between microvascular architec-

ture and perfusion parameters, akin to MR fingerprinting in

structural MR imaging. Still, further research is urgently need-

ed before these methods may be used in clinical practice.
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Key Points:
▪ Machine learning offers promising methods for processing

of perfusion data.

▪ Recurrent neural networks can classify time series with

high accuracy.

▪ Data augmentation is essentially especially when using

small datasets.

Citation Format
▪ Rotkopf LT, Zhang KS, Tavakoli AA et al. Quantitative

Analysis of DCE and DSC-MRI: From Kinetic Modeling

to Deep Learning. Fortschr Röntgenstr 2022; 194: 975–

982

Introduction

The basic goal of all contrast agent (CA)-based perfusion mea-
surement methods is to obtain detailed information about the
structure and function of the vascular network by observing its
dynamic response to a defined CA bolus. For this purpose, MR
imaging is an ideal measurement method as both high temporal
and spatial resolution may be achieved using current-generation
scanners. If the relationship between contrast agent concentra-
tion and signal intensity is known, the contrast agent concentra-
tion can be calculated for each voxel and timestep. After this has
been achieved, tissue models of different complexity may be
fitted to the concentration time curves and the results used for
diagnosis, treatment monitoring, or basic research.

The goal of this review is to explore the potential of novel deep
learning-based processing methods which may be able to capture
hitherto unknown perfusion parameters such as temporal curve
shape or spatial enhancement patterns. It may be possible to
identify, similarly to MR fingerprinting in structural MR imaging,
perfusion signatures which carry information about the underly-
ing microvascular architecture. As ample literature on the techni-
cal details of perfusion MRI exists, conventional acquisition and
processing methods are only presented in brief.

In the first section, the influence of the vascular architecture
and function on the CA dynamics are reviewed. This is followed
by a brief recapitulation of conventional T1-weighted and T2*-
weighted image acquisition methods and their relative strengths
and weaknesses. In the main section, the potential of deep learn-
ing-based perfusion processing is reviewed and discussed,
followed by an overview of current and potential future clinical ap-
plications. This is followed by a look at future research directions.

Background

Vascular networks and blood flow

The architecture and integrity of the tissue microvasculature
determine the temporal and spatial signal dynamics in response
to an external CA bolus. It must be emphasized that, while the
signal dynamics are highly dynamic and of large magnitude, the
measured blood flow and diffusion effects are largely static over
the measurement duration: the changes in contrast agent
concentration do not represent the return of a perturbed system
to its equilibrium – the CA bolus is merely the measurement vehi-
cle with which static effects such as blood flow, contrast agent
extravasation, and diffusion are measured. The relevant effects

can be largely classified into two categories: flow effects that
take place inside the vascular system and exchange effects taking
place between intra- and extravascular spaces. As physiological
microvascular flow is nearly always laminar and therefore deter-
ministic, the flow of each measured intravascular proton is theore-
tically predetermined by the vascular architecture and its flow
patterns [1]. Due to resolution limits, however, the precise mor-
phology and flow velocity of each capillary segment cannot be
known. Recent models suggest [2, 3] that the capillary network
is organized according to common principles, and that the micro-
architecture can be described by a few organizational parameters
[4, 5]. This creates the possibility to simulate realistic microvascu-
lar networks relatively easily, which can in turn be used to explore
the influence of these organizational parameters on the CA
dynamics [6]. Concepts of statistical mechanics and graph theory
may be of use to explore this space further [7]. Exchange effects
arise due to the permeability of the vessel walls, allowing the
transport of fluid and solutes, including the CA itself, between
blood and the extravascular space. This exchange is driven by con-
centration gradients, hydrostatic and oncotic pressure differen-
tials and, partly, active transport. Tumor growth is associated
with neoangiogenesis [8], with the newly developed vasculature
being significantly more fragile and permeable than the physiol-
ogical vasculature [9]. Imaging permeability effects requires
much longer measurement times [10], as the exchange effects
are at least two magnitudes slower than directed blood flow.

Basic measurement principles

For the acquisition of T1-weighted perfusion imaging, called dy-
namic contrast-enhanced (DCE) MRI, dynamic MRI measurements
using a heavily T1-weighted MR sequence with sufficient spatial
and temporal resolution are necessary. This is possible using
either spin echo or gradient echo-based stimulation schemes,
although 3D gradient echo sequences have become the de-facto
standard. An example of a DCE acquisition can be seen in
▶ Fig. 1B. Recently, compressed sensing-based sequences have
been introduced, allowing shorter acquisition times and adaptive
readout schemes. The absolute contrast agent concentration can
be calculated from the relative change in signal intensity before
and after application of the CA. For this, the absolute T1 time of
the tissue must be known beforehand, usually by applying a quan-
titative T1 mapping sequence such as a variable flip angle (VFA) or
modified Look-Locker (MOLLI) sequence. The main advantage of
T1w imaging-based perfusion measurements is that the signal in-
tensity-contrast agent concentration relationship is only weakly
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influenced by tissue effects, allowing the modeling of permeabil-
ity effects in which contrast agent leaves the vasculature.

For T2*-weighted perfusion imaging, called dynamic suscept-
ibility-weighted (DSC) MRI, usually a gradient echo sequence is ap-
plied, most commonly echo planar imaging due to its uniquely high
acquisition speed [11], as shown in ▶ Fig. 1A. As the vessel geome-
try and susceptibility difference between vessel and parenchyma
have a large influence on signal dephasing speed, it is common
practice to saturate the interstitial space in regions of high perme-
ability by applying a small pre-bolus of contrast agent before start-
ing the dynamic acquisition. This attenuates the interstitial signal
changes during passage of the main bolus, allowing correct quanti-
fication of cerebral blood flow (CBF) and cerebral blood volume
(CBV). Still, additional postprocessing correction of contrast agent
extravasation is highly advantageous [12]. The relative signal inten-
sity of T2*-weighted spin echo and gradient echo sequences is de-
pendent on the vessel geometry inside the voxel. This effect is used
in vessel size imaging (VSI) [13, 14] or vessel architecture imaging
(VAI) [15] to determine vessel diameters.

Quantitative analysis

The challenge of quantitative perfusion and permeability modelling
is fitting complex nonlinear models to noisy measurement data
while having to correctly describe the aberrant contrast agent
dynamics created by pathological tissue. Therefore, care has to be
taken when using regularization algorithms in order to not correct
away important abnormalities. From a mathematical viewpoint,
dynamic contrast agent curves are stochastic time series with over-
lying noise. Depending on the specific measurement sequence, the
noise distribution of the signal intensity [16] and contrast agent
concentration is not necessarily Gaussian. This has important impli-
cations for noise estimation and significance testing.

Perfusion modeling

The basis of perfusion modeling is the indicator-dilution theorem,
which connects the local dynamics of centrally injected contrast
agent with the local tissue blood flow and blood volume [17, 18].
These parameters can be determined directly from the concentra-

▶ Fig. 1 Comparison of DCE and DSC MRI. A Raw DSC MRI of the human brain using single-shot gradient echo planar imaging at time point t1 (left)
and t10 (right). B Calculated CBF (left) and CBV (right) maps. C Raw DCE MRI of the human brain using a 3D gradient echo TWIST sequence at time
point t1 (left) and t10 (right). D Fitted Tofts model with parameters ktrans (left), vep (right).

▶ Abb.1 Vergleich zwischen DCE- und DSC-MRT. A Rohdaten einer DSC-Aufnahme des menschlichen Gehirns mittels einer single-shot echo-
planaren Gradientenechosequenz an Zeitpunkt t1 (links) und t10 (rechts). B. Berechnete CBF- (links) und CBV- (rechts) Karten. C Rohdaten einer
DCE-Aufnahme des menschlichen Gehirns mittels einer 3D Gradientenecho-TWIST-Sequenz an Zeitpunkt t1 (links) und t10 (rechts). D Gefittetes
Tofts-Modell mit Parametermaps für ktrans (links) und vep (rechts).
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tion time curve without having to assume an underlying tissue
model. In order to account for variations in the central circulation,
the bolus curve either of a large perfusing artery or an interpola-
ted “local” vessel is used as an arterial input function (AIF) [19].
The AIF is usually either manually or automatically selected
[20, 21]. The AIF is deconvolved from the voxel CA concentration
time curve, resulting in the tissue residuum function, from which
CBF and CBV can be directly calculated. Examples of the resulting
maps are shown in ▶ Fig. 1B. While the calculation of convention-
al parameters like CBF, CBV, time to peak (TTP), and mean transit
time (MTT) is well-established and a mainstay of neurooncological
and neurovascular diagnosis, novel processing methods like wave-
let-based analysis [22, 23], Bayesian vascular models [24], and
control-point interpolation methods [25] may be able to capture
pathological changes better. In addition, direct inference from the
tissue residuum function may be able to capture important
features which are missed by calculated single parameters.
Changes in the microvascular architecture impact the transit de-
lay of the CA, leading to changes in the residuum function shape.

Permeability modeling

For modeling of permeability effects, a dynamic tissue model with
fixed exchange coefficients is assumed. Parameter fitting is usual-
ly accomplished by either nonlinear least squares (LS) fitting or
Bayesian optimization [26, 27]. Since the introduction of the Tofts
[28], Brix [29] and Patlak models [30], increasingly complex mod-
els have been proposed. Examples include the 2-compartment
chemical exchange model (2CXM) [31], the compartmental tissue
uptake (CTU) model [32], and the adiabatic approximation to the
tissue homogeneity (TH) model [33]. The maps resulting from a
Tofts model fit can be seen in ▶ Fig. 1D. While research of tissue
models for DCE perfusion has enjoyed a constant popularity
among MRI researchers and robust fitting algorithms have been
developed, clinical utilization of the derived parameters remains
low. Most diagnostic guidelines still rely on qualitative descriptors
of contrast agent bolus curves.

Deep learning

Deep learning algorithms are essentially complex nonlinear func-
tions which can represent nearly any underlying distribution
provided enough variable input is provided [34, 35]. This essen-
tially implies that most, if not all, conventional processing steps
that are applied to the raw perfusion data can be learned by a
neural network. This raises the question as to whether it is useful
to train a neural network to provide known perfusion parameters
as an output. The ultimate goal of perfusion imaging is to provide
functional information not available from purely morphological
imaging and to use it to improve detection rates, diagnostic accu-
racy, and outcome prediction. Neural networks can be trained to
directly output this information by training them on data obtain-
ed from medical records or histopathological reports, e. g., tumor
grading or staining density. The prediction of clinical outcome
parameters directly based on raw perfusion data is not an easy
task, however, and requires both a large amount of training data
and enough training time to provide sensible results. As an inter-
mediate step, the output parameters of conventional quantitative

processing methods can be learned instead, essentially teaching a
neural network the mathematical transformations behind the
processing pipeline. This is far easier than predicting clinical or
outcome parameters, as the quantitative parameter is usually
known for each voxel separately, and there is a directly (quasi-)de-
terministic relationship between input and output variables.
Therefore, less training data is required, and training converges
faster. Furthermore, even if no new information is gained compar-
ed to conventional algorithms, implementing the processing in a
common neural network may have other advantages, such as
higher processing speed or better interoperability between data
acquired by MR devices from different vendors. The raw data
from T1- or T2*-weighted perfusion imaging take the form of a
four-dimensional array – three space dimensions are acquired for
each timestep. Two different classes of neural networks have been
employed to model this spatiotemporal data: convolutional neural
networks and recurrent neural networks.

Convolutional neural networks are derived from fully convolu-
tional networks and incorporate hidden layers which perform spa-
tial convolution steps, helping them capture complex relation-
ships at different resolution scales. For perfusion imaging, the
3D images captured at each timestep are usually assigned as dif-
ferent input channels. This has the advantage of easily capturing
spatial relationships but requiring that the input data always has
the same number of timesteps. In addition, the results are not in-
variant under temporal shifts, such as when the acquisition was
started earlier or later. A possible solution is four-dimensional
convolutional neural networks with modified loss functions [36,
37]. Finally, as convolutional neural networks are commonly used
for tissue segmentations, their incorporation into perfusion pro-
cessing workflow can help in extracting tissue parameters [38].

Recurrent neural networks, on the other hand, are natively
designed for sequential input data: there is a one-to-one-relation-
ship between each temporal position in the input data and a net-
work layer [39]. Each layer, in addition to input and output nodes,
consists of several hidden nodes, with weight matrices shared be-
tween different timesteps. This makes them invariant under time
shifts, an important advantage when considering perfusion data.
Training recurrent networks has specific challenges such as van-
ishing or exploding gradient problems [39]. Several network ar-
chitectures were designed to deal with these problems, the most
prominent being long short-term memory (LSTM) nets [40, 41].
The architecture of LSTM designed to learn CBV values from DSC
data is shown in ▶ Fig. 2. LSTM networks have shown high pro-
mise in modeling a wide range of different sequential problems
in radiology, such as in predicting IDH genotype in gliomas [42],
breast lesion classification [43], for segmenting tissue or organs
[44, 45], differentiating the origins of spinal metastases [46], and
recently for predicting DCE model parameters [47]. It is also pos-
sible to learn the necessary transformations for perfusion model-
ling of DSC data, as demonstrated in ▶ Fig. 3 (own work). As can
be seen in the right part of ▶ Fig. 3B, the root mean squared error
between the predicted and the conventionally calculated CBV is
very small.
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▶ Fig. 3 Demonstration of the capabilities of an exemplary LSTM network. A Exemplary mean squared error (MSE) loss, evaluated on a validation
subset, over the training epochs, showing rapidly decreasing loss when using the ADAM optimizer for a learning rate of 1e-6. B Comparison of the
conventionally obtained CBV, as obtained by a Tikhonov-regularized singular value decomposition (TiSVD, left) and the learned CBV LSTMpred

(middle) on a test case which was not in the training or validation cohort. The right image shows the root MSE between the CBV values obtained by
the two different methods. Pseudocolor scale is identical across the methods with a range of [0, 30] ml/min.

▶ Abb.3 Beispiel der Fähigkeiten eines exemplarischen LSTM-Netzwerks. A Beispielhafte Darstellung des mittleren quadratischen Fehlers (MSE
loss) eines Validationsdatensatzes abhängig von der Trainingsepoche. Der Fehler nimmt bei Benutzung des ADAM-Optimizers und einer learning
rate von 1e-6 rasch ab. B Vergleich der mittels eines konventionellen Tikhonov-stabilisierten SVD-Algorithmus berechneten CBV, (TiSVD, links) und
der gelernten CBV (CBV LSTMpred, mittig) anhand eines Testdatensatzes, der nicht Bestandteil der Trainings- oder Validierungskohorte war. Das
rechte Bild zeigt die Wurzel des mittleren quadratischen Fehlers (RMSE) zwischen den beiden Methoden. Die Pseudofarbskala ist bei allen Darstel-
lungen einheitlich [0, 30] ml/min.

▶ Fig. 2 Recurrent neural network architecture for the prediction of CBV from DSC contrast agent curves with N time points. The network consists
of L layers with N LSTM cells, each with M hidden features, in each layer. For each voxel separately, the concentration at each time point c(tn) is
processed by a separate LSTM cell with hidden state hl,n. The weighting function wl,n is the same inside each layer. The last output of the last layer is
given as the input for a fully connected network (FCN) layer with (M, 1) nodes. The final output is the trained parameter, in this case the CBV.

▶ Abb.2 Beispielhafte Architektur eines rekurrenten neuronalen Netzwerks für die Vorhersage des CBV ausgehend von den Kontrastmittelkurven
einer DSC-MRT-Aufnahme mit N Zeitpunkten. Das Netzwerk besteht aus L Schichten mit je N LSTM-Zellen, jede mit M hidden features. Die Kon-
trastmittelkonzentrationen c(tn) zu jedem Zeitpunkt werden für jeden Voxel einzeln von einer eigenen LSTM-Zelle mit dem hidden state hl,n verar-
beitet. Die Gewichtungsfunktion wl,n ist für alle Zellen in einem Layer gleich. Der letzte Output des letzten Layers wird als Input für ein fully con-
nected network (FCN)-Layer mit (M,1)-Neuronen benützt. Der Outputparameter dieses FCN ist schlussendlich das CBV pro Voxel.
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Model interpretability and error estimation

In order to compare perfusion parameters from different voxels or
measurements, it is necessary to have an estimation of the
parameter errors. This error arises from two main sources: from
intrinsic MRI measurement noise, and from deviations between
real voxel tissue and the chosen tissue model. Only when the error
is known is it possible to correctly assess the magnitude of differ-
ences and do significance testing. There are several methods for
error estimation, with the most common model-free being boot-
strapping [48]. This method treats the model algorithm as essen-
tially a black box and considers the output error after artificially
adding noise to the input parameter. For deep learning, different
technique-specific methods have been proposed, such as dropout
methods [49] or neural networks based on Bayesian reasoning
[50, 51].

When using black-box machine learning algorithms, the
outcome predictions must be taken at face value as the algorithm
natively does not provide a reason for its prediction. Recently, the
field of neural network interpretability has made significant ad-
vances in providing measures which help with the interpretation
of results [52]. Specifically for LSTM networks, gradient-based at-
tribution methods [53] or structure modifications allowing direct
variable importance output [54] have been proposed. This can be
used to extract associations between contrast agent curve shape
and outcome parameters [42].

Current and future clinical applicability

The quantitative evaluation of DSC MRI, that is, perfusion model-
ing, currently has far more clinical applications than permeability
modeling using DCE MRI. CBF and CBV maps are used in the diag-
nosis of stroke, glioma, head-and-neck tumors, and sometimes in
cardiac imaging. On the other hand, most clinical applications of
DCE MRI imaging rely on purely qualitative or semiquantitative as-
sessment. In the PI-RADS guidelines for the diagnosis of prostate
cancer, only the presence or absence of early enhancement is
scored since the available evidence for pharmacodynamic model-
ing is deemed insufficient [55]. Similarly, breast cancer diagnosis
using the BI-RADS criteria also uses a classification of the signal
dynamics into one of three curve types according to rise speed
and washout [56]. This does not imply, however, that there is no
evidence for the usefulness of these models, and a large number
of small-scale studies exist [57]. Widespread adoption of quantita-
tive DCE is hindered by several factors such as insufficient standar-
dization of acquisition and processing. The relatively poor current
performance of quantitative DCE models in distinguishing healthy
from malignant tissue may stem from deficits in the handling of
the noise levels inherent in fast T1w imaging and in cleanly separ-
ating perfusion effects such as bolus delay and dispersion from
permeability effects. This may change in the future, however, as
deep learning-based modelling becomes commonplace. The opti-
mal mathematical framework for correctly handling both intrinsic
and extrinsic noise is given by stochastic analysis, in particular by
stochastic differential equations.

OUTLOOK

Currently, CA-based perfusion MRI is a well-established functional
imaging method with a multitude of appropriate processing
methods. While new processing methods continue to be devel-
oped, progress has declined somewhat in recent years. Machine
learning in general, and deep learning in particular, comprise pro-
mising new avenues for better and more reliable processing
methods. The inherently stochastic nature of neural networks re-
presents an ideal fit for modeling the inherently noisy CA dynam-
ics. Due to their flexibility, these methods may be capable of mod-
elling the complex dynamics inherent in aberrant blood flow
patterns without having to specify a particular model beforehand.

The main challenge in applying deep learning algorithms to
perfusion MRI data remains the necessity of high-quality and
plentiful data for training. Not only does the raw perfusion
data need to be acquired under standardized conditions using
comparable sequence parameters, but the trained goal para-
meters, whether segmentations, clinical outcome parameters, or
conventional perfusion parameters, need to be high-quality too.
Particularly the prediction of clinical outcome parameters is
demanding due to the often highly nonlinear and indirect rela-
tionship between perfusion data and final outcome.

A possible avenue to circumvent the problem of always having
to learn the complete problem set is using physics-informed neur-
al networks, which can learn complex tasks while preserving phys-
ical or heuristic relationships specified as differential equations
[58]. These may be able to directly learn, for example, DCE param-
eters for a specified model. An even newer generalization of
physics-informed neural networks, universal neural differential
equations, provide an explicit way of doing this [59, 60]. The
disadvantage, however, is that the explicit model-free nature of
deep learning is partially lost.

In conclusion, deep learning-based processing of perfusion
MRI data holds high promise for diagnosis and treatment monitor-
ing in oncology. The novel methods may be uniquely suited for
the inherently noisy time series obtained for each voxel and can
learn almost any sensible parameter. A special focus should be
on connecting architectural modeling and perfusion parameters,
as this may allow monitoring of microstructural changes in the
microvascular architecture induced by neoangiogenesis or as
treatment response. Due to the rapid progress in the field, further
research is urgently needed.
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