Synthesis 2022; 54(12): 2816-2824
DOI: 10.1055/a-1765-1615
feature

From Ring-Expansion to Ring-Contraction: Synthesis of γ-Lactones from Cyclobutanols and Relative Stability of Five- and Six-Membered Endoperoxides toward Organic Bases

Nicolas Jamey
,
Laurent Ferrié
N. Jamey thanks the Ministère de l’Enseignement Superieur, de la Recherche et de l′Innovation (MESRI) for a PhD fellowship.


Abstract

Cyclobutanols undergo ring expansion with molecular oxygen in the presence of Co(acac)2 to afford 1,2-dioxane-hemiperoxyketals. In the course of acylation, we observed that endoperoxides rearranged into γ-lactone in the presence of triethylamine. Thus, a generalization of this ring contraction through a Kornblum–DeLaMare rearrangement is here reported. Application of this transformation to monosubstituted 1,2-dioxane derivatives also led to 1,4-ketoaldehydes, in proportions depending on the nature of the substituent. These same conditions applied to five-membered dioxolane analogues led to fragmentation instead, through a retro-aldol type process. This study emphasizes the difference of stability of 1,2-dioxane and 1,2-dioxolane against organic bases, 1,2-dioxolanes having proved to be particularly reactive whereas 1,2-dioxanes showed a relative tolerance under these conditions.

Supporting Information



Publication History

Received: 03 December 2021

Accepted after revision: 07 February 2022

Accepted Manuscript online:
07 February 2022

Article published online:
24 March 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Liu D.-Z, Liu J.-K. Nat. Prod. Bioprospect. 2013; 3: 161
  • 2 Vera AV, Alexander OT, Olga MM. Curr. Top. Med. Chem. 2019; 19: 1201
  • 3 Yaremenko IA, Vil’ VA, Demchuk DV, Terent’ev AO. Beilstein J. Org. Chem. 2016; 12: 1647
  • 4 Pinet A, Nguyen LT, Figadère B, Ferrié L. Eur. J. Org. Chem. 2020; 7407
  • 5 Ferrié L. In Advances in Heterocyclic Chemistry, Vol. 135. Scriven EF. V, Ramsden CA. Academic Press; Oxford: 2021: 57
  • 6 Kulinkovich OG, Astashko DA, Tyvorskii VI, Ilyina NA. Synthesis 2001; 1453
  • 7 López MM, Jamey N, Pinet A, Figadère B, Ferrié L. Org. Lett. 2021; 23: 1626
  • 8 Pinet A, Figadère B, Ferrié L. Adv. Synth. Catal. 2020; 362: 1190
  • 9 Pinet A, Nguyen TL, Bernadat G, Figadère B, Ferrié L. Org. Lett. 2019; 21: 4729
  • 10 Jefford CW, Kohmoto S, Rossier J.-C, Boukouvalas J. J. Chem. Soc., Chem. Commun. 1985; 1783
  • 11 Snider BB, Shi Z, O’Neil SV, Kreutter KD, Arakaki TL. J. Org. Chem. 1994; 59: 1726
  • 12 Hon Y.-S, Lin S.-W, Lu L, Chen Y.-J. Tetrahedron 1995; 51: 5019
  • 13 Piotto M, Bourdonneau M, Elbayed K, Wieruszeski J.-M, Lippens G. Magn. Reson. Chem. 2006; 44: 943
  • 14 Hölemann A, Reissig H.-U. Synthesis 2004; 1963
  • 15 Cossy J, Bargiggia F, BouzBouz S. Org. Lett. 2003; 5: 459
  • 16 Mondal K, Mondal B, Pan SC. J. Org. Chem. 2016; 81: 4835
  • 17 Sakai N, Horikawa S, Ogiwara Y. RSC Adv. 2016; 6: 81763
  • 18 Wang B, Shen Y.-M, Shi Y. J. Org. Chem. 2006; 71: 9519
  • 19 Wang J, Huang B, Shi C, Yang C, Xia W. J. Org. Chem. 2018; 83: 9696
  • 20 Danheiser RL, Savoca AC. J. Org. Chem. 1985; 50: 2401