The influence of computer-aided polyp detection systems on reaction time for polyp detection and eye gaze

INFOGRAPHIC

The influence of CADe on the examiner

Eye-tracking Colonoscopy

Reaction time on polyp detection

21 29 with CADe 29 without CADe

1st assessment

3-week washout period

2nd assessment

Median reaction time

<table>
<thead>
<tr>
<th></th>
<th>CADe</th>
<th>1.16 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st ass</td>
<td></td>
<td>2.97 s</td>
</tr>
<tr>
<td>with CADe</td>
<td></td>
<td>2.90 s</td>
</tr>
</tbody>
</table>

Experience

Novice

Innovations and brief communications

Tables 1 s, 2 s; Figs. 1 s–4 s

Supplementary material is available under https://doi.org/10.1055/a-1770-7353

ABSTRACT

Background Multiple computer-aided systems for polyp detection (CADe) have been introduced into clinical practice, with an unclear effect on examiner behavior. This study aimed to measure the influence of a CADe system on...
Methods Participants with variable levels of colonoscopy experience viewed video sequences (n=29) while eye movement was tracked. Using a crossover design, videos were presented in two assessments, with and without CADe support. Reaction time for polyp detection and eye-tracking metrics were evaluated.

Results 21 participants performed 1218 experiments. CADe was significantly faster in detecting polyps compared with participants (median 1.16 seconds [99%CI 0.40–3.43] vs. 2.97 seconds [99%CI 2.53–3.77], respectively). However, the reaction time of participants when using CADe (median 2.90 seconds [99%CI 2.55–3.38]) was similar to that without CADe. CADe increased misinterpretation of normal mucosa and reduced the eye travel distance.

Conclusions Results confirm that CADe systems detect polyps faster than humans. However, use of CADe did not improve human reaction times. It increased misinterpretation of normal mucosa and decreased the eye travel distance. Possible consequences of these findings might be prolonged examination time and deskilling.

Introduction

Computer-aided systems for polyp detection (CADe) are expected to improve the quality of care in screening colonoscopy for colorectal cancer (CRC). The main indicator for the quality of screening colonoscopy is the adenoma detection rate (ADR) [1, 2]. A meta-analysis of randomized studies evaluating the effect of CADe systems on ADR showed a significant increase in ADR with the use of artificial intelligence (AI) [3]. Even when compared with existing advanced imaging techniques and distal attachment devices, AI systems presented superior benefits, as outlined in a recent systematic review and network meta-analysis [4].

Several CADe systems have already been introduced to the market and are used with increasing frequency [5–7]. Thus, scientific investigation of this new technology is needed to understand the effect of CADe systems on the examiner. Hassan et al. showed that the first detection time (FDT) of the proposed CADe system was shorter than the reaction time of endoscopists when a polyp appeared on the screen during colonoscopy [8]. A measurement of the reaction time of the examiner when using the CADe system was not performed in that study. A short FDT could allow the detection of additional polyps that appear for only a short period of time. However, an important limitation of CADe systems is false-positive detections. Identification and classification of false positives are important and are the subject of current research [9]. However, few data are available on the effect of false positives on the examiner and on the ability to react to CADe findings. Most importantly, potential overreliance on CADe and deskilling need to be analyzed. Less-experienced endoscopists might be particularly susceptible to these effects and should be included as a dedicated subgroup in CADe research [10].

Eye-tracking assessment of colonoscopists enables analysis of visual gaze pattern (VGP) during colonoscopy [11–13]. The VGP of expert colonoscopists differs from that of novices [12]. Therefore, the assessment of VGP has the potential to reveal behavioral changes induced by CADe systems.

This study aimed to assess the influence of a CADe system on the reaction time of examiners. In addition, the influence of false-positive detections on the misinterpretation of mucosal surfaces and changes in VGP of examiners were analyzed. Examiners were further stratified into novices and experienced endoscopy staff in order to account for this confounding factor.
Misinterpretation of the mucosa that led to false-positive detections of the participant and eye-tracking metrics were secondary end points. Regarding misinterpretations, we performed a comparative analysis between misinterpretations with and without CADe support. In addition, eye-tracking metrics including the distance of eye travel and the percentage of time an examiner inspected CADe bounding boxes were assessed. In addition, a heatmap containing gaze data of an experienced examiner and a novice, with and without CADe support, using a video with mild false-positive activations was generated to exemplify the different eye travel patterns. A P value of <0.01 indicated statistical significance.

Ethical considerations

The study was approved by the local ethical committee (No. 2021033001). All procedures were in accordance with the Helsinki Declaration of 1964 and later versions. Written informed consent for publication from the person shown in Fig. 2s was obtained prior to submission.

Results

Participants

A total of 21 participants were enrolled in the study (Fig. 1) and assessed 29 video sequences with and without the CADe system, leading to a total of 1218 experiments. The ratio of professional experience was balanced, with 10 novice and 11 experienced participants. The reaction time was analyzed in all experiments. A comparison of the median reaction time paired distribution at the first assessment with the one at the second assessment confirmed the effectiveness of the 3-week washout period. Owing to optical interference of prescription glasses with the eye-tracking device, the eye tracking data of one novice and three experienced participants could not be analyzed.

Reaction time for polyp detection

Out of 17 polyps visible in the videos, experienced and novice examiners both detected a median of 16 polyps ($99\% CI 16–16$ for both). The use of the CADe system did not change the number of polyps detected.

The median FDT of the CADe system itself was 1.16 seconds ($99\% CI 0.40–3.43$). This was significantly faster than the median reaction time of participants (2.97 seconds [$99\% CI 2.53–3.77$]). This finding held true when the six participants with the fastest reaction times were compared with the CADe FDT. Surprisingly, the median reaction time of participants using the CADe system (2.90 seconds [$99\% CI 2.55–3.38$]) was not statistically different from that without CADe support (Fig. 2).

We performed a subgroup analysis to estimate the impact of experience on the reaction time and how the CADe influenced polyp detection by novices. The median reaction time of experienced examiners was 2.54 seconds, which was faster than that of novices (3.38 seconds); however, this difference was not statistically significant. CADe support did not significantly decrease the reaction time of either of the two groups (Fig. 3s).

There was no significant difference in reaction time between the subgroups of professional roles (Table 2s).
Analyzing the five longest FDTs of the CADe system (range 3.3–6.03 seconds) revealed that four of those were also included in the five longest reaction times of participants without CADe help (range of medians 5.83–19.2 seconds). Thus, polyps that were recognized with difficulty (i.e. longer FDTs) by the CADe system were also recognized with difficulty by participants.

Misinterpretation of polyps

A total of 29 videos were used to analyze how often the examiner misinterpreted the displayed mucosa for a polyp. Participants falsely identified a polyp in a median of 4 cases (99% CI 2–5) without CADe and a median of 6 cases (99% CI 4–7) with CADe support ($P = 0.001$, $n = 21$). Regardless of the experience level, both groups significantly misidentified more normal mucosa for a polyp when using CADe support (Fig. 4s).

Considering the classification of false-positive detections published previously [9], participants falsely identified a polyp significantly more often in videos containing moderate and severe activations than in videos containing mild activations (99% CI 0–1, 1–1, 0–0, respectively).

Eye gaze

To further analyze the influence of the CADe system on the gaze pattern of participants, the eye travel distance was measured. The eyes of participants watching videos without a CADe system traveled significantly longer distances than when participants viewed the same videos with the support of a CADe system (▶ Table 1). This difference was also significant for experts, novices, and when videos containing only false positives were analyzed. ▶ Fig. 3 is an example of the area covered by the gaze of a novice and an experienced examiner on a video containing no polyp.

To assess whether and how long participants visualized false-positive detections generated by the CADe system, we analyzed the percentage of time an examiner inspected false-positive bounding boxes (▶ Table 2). Participants inspected the bounding boxes for <50% of the time that the boxes were displayed on the screen. This percentage was lowest for mild false-positive activations in both novice and experienced groups. In addition, novices spent significantly more time than experienced examiners inspecting the CADe false-positive detections.

Discussion

In this study, we analyzed the influence of a commercially available CADe system on endoscopy professionals regarding time to polyp detection, misinterpretation of colonic mucosa, and VGP changes. Longer withdrawal times lead to improved ADR rates [14], but examination time is limited in clinical practice. Evaluation of the difference in FDT between the CADe system and the reaction time of the participants revealed a significant difference of 1.81 seconds. This is in agreement with the study by Hassan et al., who reported a difference of 1.27 seconds between colonoscopists and the CADe system [8]. Thus, we can confirm that a CADe system detects faster than humans. A fast CADe system could analyze more suspicious mucosal areas in the same time span, thereby potentially leading to higher ADRs.

In our study, experienced participants presented a nonsignificant trend toward faster reaction times compared with novi-
ces. However, we also observed that there was no shortening of reaction time when CADe system support was used. An influencing factor might have been the false-positive detections of the CADe system. Reaction time may have been prolonged because the participant had to critically verify all bounding boxes. However, in general, the shorter FDT of the CADe system offers the potential to point the examiner in the right direction for polyp detection, thereby remodeling the VGP of endoscopists.

To further evaluate the effect of false-positive CADe detections on the examiner, we analyzed videos without polyps. In these cases, the use of the CADe system led to misinterpretation of normal mucosa. This was true for both novices and experienced participants. Based on these data, we hypothesize that overreliance is a potential drawback of CADe systems, and that a thorough evaluation of bounding boxes is mandatory.

Evaluation of participants by eye-tracking revealed VGP remodeling influenced by the CADe system. Videos examined with AI support significantly reduced eye travel distance. This was pronounced in the sequences without polyps where examiners were expected to show their visual polyp search pattern. Effort, as expressed by eye travel distance, decreased, and gaze remained more focused, presumably waiting for a bounding box to appear. This might be efficient but risks missing a polyp that is not captured by the system. To further analyze the changes in VGP, we generated a heatmap of the principal search pattern for polyps using data from one experienced and one novice participant. This is consistent with a previous report by Lami et al. describing the VGPs of colonoscopists with different polyp detection rates, where the distribution of fixations to the so-called “bottom U” of the screen was positively correlated with polyp detection rate [12]. Extrapolating this finding raises the concern that CADe systems may have an impact on the learning curve of colonoscopy trainees by preventing them from developing the visual “bottom U” pattern of high-performing endoscopists [10].

Regarding false-positive detections, participants inspected false-positive bounding boxes for <50% of the time that the bounding boxes were displayed on the screen. The percentage decreased even more significantly for short activations. Hassan et al. previously questioned the relevance of these short activations; thus, developers of CADe systems might consider suppressing them [9].

Limitations of the study include the experimental design using only short video sequences that were chosen in order to increase the number of voluntary participants.

In conclusion, we confirmed the superiority of CADe systems compared with human examiners regarding the time to polyp detection. However, use of CADe did not result in a shorter time to polyp detection by human examiners. The use of the CADe system led to greater misinterpretation of the mucosa and reduction in eye travel distance during mucosal inspection. Analysis of false-positive detections and eye tracking metrics revealed marked changes, influenced by CADe, and suggests a potential risk of overreliance and deskilling when these systems are used.

Competing interests

The authors declare that they have no conflict of interest.

Funding

Bavarian Center for Cancer Research (BZKF)
Interdisziplinäres Zentrum für Klinische Forschung, Universitätsklinikum Würzburg F-406
Funding cluster "Forum Gesundheitsstandort Baden-Württemberg" 5409.0-001.01/15

References

Table 2 Percentage of time an examiner inspected false-positive bounding boxes relative to duration of the bounding box on screen.

<table>
<thead>
<tr>
<th>False-positive activation length*</th>
<th>Experienced</th>
<th>Novices</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Mild</td>
<td>22.86 (18.10–34.29)</td>
<td>28.10 (15.24–33.81)</td>
<td>24.76 (18.10–32.38)</td>
</tr>
<tr>
<td>• Moderate</td>
<td>47.64 (30.19–63.68)</td>
<td>51.89 (36.08–69.34)</td>
<td>50.94 (35.85–63.68)</td>
</tr>
<tr>
<td>• Severe</td>
<td>42.14 (23.67–55.51)</td>
<td>56.53 (38.01–77.35)</td>
<td>47.75 (39.18–63.78)</td>
</tr>
<tr>
<td>• All</td>
<td>42.68 (30.14–50.44)</td>
<td>49.50 (41.31–63.28)</td>
<td>43.79 (40.71–54.89)</td>
</tr>
</tbody>
</table>

* Mild = < 1 second; moderate = 1–3 seconds; severe = > 3 seconds.

