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Introduction
Fibroblast growth factor (FGF) 21 is an important metabolic regula-
tor that controls energy homeostasis. Preservation of constant body 
mass depends on the balance between food intake and energy ex-
penditure during both physical activity and at rest. Impairment of this 
balance, in conjunction with unlimited food supply, results in obesity. 
FGF21 is induced in the liver in response to nutritional signals and se-
creted into the bloodstream to reach the central nervous system 
(CNS). There, it exerts its main action of changing food preferences 
[1–3] and increasing thermogenesis in brown adipose tissue (BAT) by 
central beta-adrenergic stimulation [4, 5]. FGF21 is a signal that con-
nects the liver with both the CNS and adipose tissue to adjust food 
preferences and energy expenditure to dietetic changes. Pharmaco-
logical treatment with FGF21 exerts many metabolic benefits, for 
example, weight loss, decreased serum cholesterol and triglycerides 

(TG), and lowering of plasma glucose while increasing insulin sensi-
tivity (IS) [4, 6–8]. FGF21 decreases serum TG and prevents hepatic 
lipid deposition, which protects the liver from non-alcoholic fatty liver 
disease (NAFLD) development [9, 10] (▶Fig. 1,  2).

FGF21 lowers plasma glucose levels mainly by enhancing BAT in-
sulin sensitivity. In brown and white adipose tissue, it is also locally 
secreted and exerts auto- and paracrine action. When produced lo-
cally in BAT, FGF21 stimulates thermogenesis in response to cold ex-
posure as a downstream effect of central beta-adrenergic signaling 
[11], while in white adipose tissue (WAT) it suppresses lipolysis 
[12, 13] and likely stimulates adiponectin secretion [12]. However, 
while FGF21 exerts many beneficial metabolic effects, it is paradox-
ically elevated in insulin resistance (IR) states, for example, obesity, 
type 2 diabetes, and NAFLD [14]. Whether this result is from resist-
ance to its action [15, 16] or increased compensatory secretion [17] 
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Abstr act

Fibroblast growth factor (FGF) 21 is a recently recognized met-
abolic regulator that evokes interest due to its beneficial action 
of maintaining whole-body energy balance and protecting the 
liver from excessive triglyceride production and storage. To-
gether with FGF19 and FGF23, FGF21 belongs to the FGF fam-
ily with hormone-like activity. Serum FGF21 is generated pri-
marily in the liver under nutritional stress stimuli like prolonged 
fasting or the lipotoxic diet, but also during increased mito-
chondrial and endoplasmic reticulum stress. FGF21 exerts its 
endocrine action in the central nervous system and adipose 
tissue. Acting in the ventromedial hypothalamus, FGF21 dimi
nishes simple sugar intake. In adipose tissue, FGF21 promotes 
glucose utilization and increases energy expenditure by en-
hancing adipose tissue insulin sensitivity and brown adipose 
tissue thermogenesis. Therefore, FGF21 favors glucose con-
sumption for heat production instead of energy storage. Fur-
thermore, FGF21 specifically acts in the liver, where it protects 
hepatocytes from metabolic stress caused by lipid overload. 
FGF21 stimulates hepatic fatty acid oxidation and reduces lipid 
flux into the liver by increasing peripheral lipoprotein catabo-
lism and reducing adipocyte lipolysis. Paradoxically, and de-
spite its beneficial action, FGF21 is elevated in insulin resistance 
states, that is, fatty liver, obesity, and type 2 diabetes.
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remains controversial. FGF21 is produced by many different target 
tissues and exert differential actions via auto-, para-, and endocrine 
manners resulting in an extremely complicated biological function 
that in many aspects is still unexplained. Because of its beneficial 
properties and substantial therapeutic potential, it has evoked enor-
mous interest from academics and pharmaceutical companies.

Fibroblast growth factors with endocrine 
actions
To date, twenty-three FGFs have been isolated, which have been 
divided into 7 subfamilies. Classical FGFs regulate cellular growth 
and differentiation, wound healing, angiogenesis, and embryonic 
development [18] by acting in an auto- and paracrine manner at 
the site of formation. Endocrine FGFs require the cofactor klotho/
β-klotho to achieve ligand-receptor interaction, and the presence 
of the cofactor determines their action in particular tissues [19, 20]. 
The endocrine subfamily consists of three FGFs, namely FGF19 (and 
the mouse counterpart FGF15), FGF21, and FGF23 [20, 21]. Of 
these three, FGF23 binds klotho, while FGF19 and FGF21 exhibit af-
finity to the same β-klotho (KLB) cofactor, and the specificity of 
their action is determined by the activation of different subtypes 
of four FGF receptors. FGF19 activates FGFR4, whereas FGF21 pre-
dominantly binds FGFR1c [21]. FGF19 is produced in the intestine 

and regulates bile acids synthesis and metabolism. FGF23 is gen-
erated in bone and controls phosphate metabolism [22].

FGF21 signaling
FGF21 is a protein containing 208 amino acids and is encoded on 
chromosome 19 (19q13.33). The FGF21 gene is highly conserved 
between species. Human FGF21 differs by only one amino acid from 
gorillas and exerts approximately 75 % homology with rodents. 
FGF21 alone exhibits only weak affinity to specific FGFR1c. The pres-
ence of KLB is indispensable for interaction with the receptor and 
determines tissue specificity. To activate the FGF receptor, the 
C-terminus of the molecule binds KLB, and the N-terminus inter-
acts with FGFR1c [20, 21]. Once bound to its membrane-bound re-
ceptor, tyrosine kinase activity is initiated which further activates 
the mitogen-activated protein kinase pathway (Ras/Raf/MAPK). 
MAPK induces extracellular signal-related kinase (ERK) 1 and ERK2, 
which enter the nucleus and stimulate target genes transcription 
[20, 23, 24]. Besides this, FGF21 also activates the AMPK-SIRT1 
pathway which induces posttranslational modification of proteins 
[25]. However, the exact mechanisms of intracellular FGF21 sign-
aling remain unknown.

Several factors modify FGF21/receptor interaction, which re-
sults in changes to its action in vivo. In obesity, excessive TNF-α re-
lease from adipocytes suppresses KLB expression which in turn con-
tributes to impaired FGF21 action and FGF21 resistance [26]. Like-
wise, FGFR1c expression in adipose tissue is reduced in obesity [27]. 
By contrast, thiazolidinediones [28] and glucagon-like peptide-1 
(GLP-1) [29] increase KLB expression which potentiates FGF21 sig-

▶Fig. 1	 FGF21 regulates macronutrient preference, insulin-sensi-
tivity and whole-body energy homeostasis. In humans, serum FGF21 
is produced primarily in the liver under stimulus of simple sugar 
intake. In the brain, FGF21 reduces the excitability of glucose-de-
pendent neurons of the ventromedial hypothalamus which results in 
the suppression of sweet-taste preference and the reduction in 
sucrose consumption. In brown adipose tissue, FGF21 acutely and 
potently enhances insulin-sensitivity, promoting glucose utilization 
for heat production during thermogenesis, the main contributor of 
acute glucose-lowering properties of the molecule. Simultaneously 
FGF21 exerts the prolonged action of inducing weight loss by indi-
rect brown adipose tissue thermogenesis, likely via increased central 
sympathetic stimulation. In white adipose tissue, FGF21 increases 
insulin-sensitivity and suppress lipolysis. BAT: Brown adipose tissue; 
WAT: White adipose tissue; VMH: Ventromedial hypothalamus.

▶Fig. 2	 FGF 21 reverses fatty liver and subsequent hepatic fibrosis. 
FGF21 acts in the liver itself, where it stimulates β-oxidation of free 
fatty acids and suppress triglyceride formation and VLDL production. 
FGF21 also decreases lipid flux into the liver by inducing peripheral 
lipoprotein catabolism and suppression of adipose tissue lipolysis. As 
a result, FGF21 lowers intrahepatic and serum triglyceride content. 
FGF21 administration reverses NAFLD and hepatic fibrosis. BAT: 
Brown adipose tissue; WAT: White adipose tissue; VLDL: Very 
low-density lipoprotein; NAFLD: Non-alcoholic fatty liver disease.
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naling. FGF21 secretion is also regulated by the YIPF6 protein, 
which is a membrane receptor on secretory vesicles of the endo-
plasmic reticulum [30] that works to limit FGF21 secretion. Further-
more, FGF21 is subject to proteolytic cleavage by the serum serine 
proteases Fibroblast Activation Protein (FAP) and dipeptidyl pepti-
dase IV (DPP-IV). Cleavage at residue 171 by FAP prevents protein 
interaction with KLB because the last ten amino acids are crucial 
for cofactor binding [20, 31]. On the contrary, cleavage by DPP-IV 
at residues 2 and 4 does not disturb ligand-receptor interaction and 
protein action [32].

FGF21 synthesis
FGF21 originates in the liver, both BAT and WAT, the pancreas, and 
heart muscle. Muscles exhibit very limited expression of FGF21 
under physiological conditions. However, its synthesis and release 
increase dramatically in mitochondrial myopathies as a conse-
quence of excessive oxidative stress [33–37]. Therefore, increased 
circulating levels of FGF21 likely serve as a marker of mitochondri-
al disease [38]. Beyond these pathological conditions, serum FGF21 
derives primarily, if not exclusively from the liver [39], and mole-
cules generated in adipose tissue, pancreas, and heart muscle act 
locally in either an auto- or paracrine manner.

FGF21 secretion
The liver is the primary, if not only source of systemic FGF21, and its 
secretion is induced by nutritional and cellular stress signals. Hepat-
ic FGF21 is generated in response to nutritional stress including ex-
tended fasting, a ketogenic diet, amino acid deprivation, or simple 
sugar consumption. In humans, the most important stimuli are fruc-
tose ingestion [40, 41], prolonged starvation [42] and protein re-
striction [43]. On the contrary, in rodents FGF21 is mainly secreted 
in response to extended fasting or consumption of a ketogenic diet.

FGF21 is induced during starvation and 
consumption of a ketogenic diet
In rodents, FGF21 secretion is induced by free fatty acids (FFA) gen-
erated endogenously during adipose tissue lipolysis in the starva-
tion state or delivered with food during high fat consumption [44–
46]. Free fatty acids increase FGF21 secretion downstream of nu-
clear receptor PPARα signaling, which occurs abundantly in the liver 
and serves as a sensor of cellular energy supply. PPARα, is a li-
gand-activated nuclear receptor that heterodimerizes with nucle-
ar retinoid X receptor (RXR) and stimulates the expression of tar-
get genes to induce beta-oxidation. Free fatty acids, via PPARα ac-
tivate FGF21 gene transcription, and subsequently FGF21 
increases the expression of the PPARγ coactivator-1α (PGC-1α), a 
key factor that promotes FFA oxidation through mitochondrial bi-
ogenesis and function enhancement [47, 48]. PGC-1α directs FFA 
to the beta-oxidation and ketogenesis pathway to generate aceto-
acetate and beta-hydroxybutyrate, that are subsequently used as 
energy source. FGF21 also enhances mitochondrial beta-oxidation 
gene expression, that is, CPT-1α and HMGCS2 [44].

Simultaneously, an alternative pathway of FFA conversion to dia-
cylglycerol and TG is suppressed, which favors increased energy uti-

lization instead of hepatic TG synthesis and fat storage. Because 
FGF21 stimulates weight loss, and as a consequence increases IS, it 
would be possible that a decrease in hepatic TG accretion resulted 
from reduced insulin level. However, this is not the only mechanism 
involved, as other types of lipotoxic diets stimulate FGF21 expres-
sion in the liver as well. Therefore, increased FGF21 secretion occurs 
in mice consuming different types of lipotoxic diets, such as those 
deficient in leucine [49], alanine [50], methionine, and choline 
[51, 52], or a fructose-rich diet, independently of insulin action.

FGF21 is induced by protein restriction
Protein restriction activates FGF21 secretion via transcription fac-
tors ATF4 and NRF [43, 53]. In mice, methionine and choline-defi-
cient diets induce hepatic FGF21 mRNA and elevates FGF21 serum 
levels, while in mice with genetically ablated FGF21 (Fgf21–/–), 
consumption of this diet leads to hepatic fat accumulation, liver in-
flammation, and fibrosis [51, 52]. Furthermore, in Fgf21–/–mice, 
methionine and choline deprivation results in impaired FFA oxida-
tion, and increased expression of genes involved in TG synthesis. In 
these mice, increased TG storage induces hepatic steatosis, inflam-
mation, and fibrosis that resolves following FGF21 pharmacologi-
cal treatment [51, 52].

FGF21 is induced by fructose consumption
In humans neither starvation for 48 hours, nor consumption of a 
ketogenic diet for three months substantially changes FGF21 se-
cretion and unlike rodents, FGF21 is strongly induced by high sugar 
intake, particularly fructose. This effect is mediated through the 
carbohydrate response element-binding protein (CHREBP)-de-
pendent pathway [1, 54]. Intravenous injection of 75 g of fructose 
results in acute FGF21 release. Within 120 minutes following fruc-
tose administration, the FGF21 serum level rose on average 3.4-
fold (1.5–6.6 fold) in lean individuals and returned to baseline dur-
ing the subsequent 5 hours. Conversely, after intravenous glucose 
injection, the FGF21 peak was 40 % smaller and delayed for between 
4–5 hours. Furthermore, the FGF21 peak response to fructose in-
jection was 2.5-fold higher, and the area under the curve of secre-
tion 2.7-fold greater in patients with metabolic syndrome than for 
lean people [40]. FGF21 hepatic expression and plasma levels of 
the protein are induced by simple sugar downstream of CHREBP 
signaling, which is strongly activated by fructose and to a lesser ex-
tent by glucose [1, 54–56]. CHREBP activates hexose metabolism 
by de novo lipogenesis, which triggers simple sugar transformation 
into FFA. Although glucose and fructose exhibit the same caloric 
value, they are not metabolically equivalent. Fructose is 90 % ab-
sorbed during the first pass through the liver, where it primarily en-
ters de novo lipogenesis and is metabolized to FFA, whereas glu-
cose is preferentially captured and used in peripheral tissues. Al-
though fructose strongly activates hepatic CHREBP, which induces 
genes involved in de novo lipogenesis, concomitantly, CHREBP 
stimulates FGF21 gene expression, which favors beta-oxidation of 
FFA instead of their conversion to TG and further accretion in the 
liver. This action is seen in Fgf21–/– mice, which when fed with the 
fructose-rich diet for 8 weeks, exert histological traits of hepatic 
steatosis, inflammation, and fibrosis. This transcriptional mecha-
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nism is also conserved in humans [40, 41]. Therefore, FGF21 de-
creases hepatic lipogenesis and prevents fatty liver development 
independent of stimulus, and regardless of whether FFA generated 
during starvation via PPARα, which dominates in rodents, or car-
bohydrate ingestion upstream of CHREBP being the most impor-
tant pathway in humans. Furthermore, when released into circula-
tion, FGF21 provides information from the liver to the whole-body 
of nutritional and metabolic stress, which adjusts IS, food prefer-
ences, and resting metabolic expenditure to the nutritional status.

FGF21 decreases hepatic triglyceride 
accumulation
FGF21 is generated primarily in the liver and protects other tissues 
against metabolic and nutritional stress. In addition, it acts on the 
liver itself to prevent inflammation and fibrosis induced by exces-
sive lipid deposition. FGF21 analogues reduce hepatic fat and nor-
malize biochemical markers of hepatic cirrhosis in patients with 
obesity, type 2 diabetes, and non-alcoholic steatohepatitis (NASH) 
[57]. Administration of the FGF21 analogue pegbelfermin in per-
sons with NASH reduces hepatic fat content when assessed with 
MRI on average from 6–8 to 1–3 % [10]. FGF21 exerts complex ac-
tions in the liver, which encompasses a probable direct intrahepat-
ic paracrine effect, but also general action through modification of 
adipose tissue signaling. As mentioned in the previous section, 
FGF21 increases the expression of PGC1-α in the liver, which 
through mitochondrial enhancement induces FFA oxidation and 
prevents their conversion into TG and further accumulation [47]. 
Furthermore, FGF21 reduces NAFLD, and obesity-related endoplas-
mic reticulum and oxidative stress linked to excessive hepatic lipid 
deposition [58, 59]. Additionally, decreased hepatic lipogenesis re-
sults in reduction of TG serum concentration. Moreover, FGF21 low-
ers serum TG levels through suppression of WAT lipolysis [9] and 
increases in lipoprotein lipase activity and lipoprotein catabolism 
[60]. In a number of clinical trials, FGF21 analogues, as well as mon-
oclonal antibodies against the FGFR1-KLB complex, lower TG serum 
level by up to 70 % [8, 9].

Although some studies suggest a direct action of FGF21 in the 
liver [48, 61], others demonstrate divergent results [47, 62, 63]. In-
terestingly, primary hepatocytes do not express FGFR1c, the most 
important FGF21 receptor [20, 64]. However, they show KLB activ-
ity, and expression of FGF21 receptors FGFR2 and FGFR3, although 
these are less specific for FGF21 [20, 64]. It is also possible that FG-
FR1c expression in hepatocytes emerges during NASH, in a similar 
manner to immortalized HepG2 hepatocytes which express FGFR1c 
unlike healthy hepatocytes [65]. Furthermore, selective KLB abla-
tion in mouse hepatocytes do not affect carbohydrate and lipid me-
tabolism, suggesting that a direct effect in the liver is dispensable 
for FGF21 function [66]. Therefore, the beneficial action of revers-
ing liver inflammation and fibrosis may occur indirectly with the par-
ticipation of adipose tissue. It has been suggested that adiponectin 
may be an important player in this issue. According to some stud-
ies, pharmacological administration of FGF21 stimulates adiponec-
tin secretion in adipose tissue, and adiponectin acts reciprocally in 
the liver, where it suppresses intracellular lipids accumulation and 
lipotoxicity [67, 68], although these results are controversial [69]. 
Furthermore, the surge of adiponectin may be induced by pharma-

cological doses of FGF21 or FGF21 analogues [9, 10, 70], and wheth-
er this occurs under physiological conditions in vivo remains to be 
determined. Paradoxically, despite beneficial action FGF21 serum 
concentration is elevated in humans with hepatic steatosis [71]. 
Augmented FGF21 mRNA expression within liver biopsies and in-
creased FGF21 serum levels occur in NAFLD and increased hepatic 
fat content in 1H-MRI correlate well with FGF21 serum concentra-
tion [71, 72]. The possible explanation of this phenomenon is that 
in NAFLD-associated states like insulin resistance, obesity, and type 
2 diabetes, the surplus of nutritional factors, or increased endoplas-
mic reticulum and oxidative stress activate compensatory FGF21 
release. Thereafter, secondary resistance to FGF21 action may de-
velop, which triggers a further surge of its secretion. Evidence of 
this can be seen in mice with diet-induced obesity, in which FGFR 
resistance in the liver, as well as in adipose tissue, was observed. It 
has manifested by diminished receptor-dependent ERK1/2 kinases 
phosphorylation and decreased transcription of target genes after 
exogenous FGF21 administration. Receptor resistance was over-
come by higher pharmacological doses of FGF21 [16].

FGF21 increases insulin sensitivity of adipose 
tissue
In 2005, during a screening of several novel proteins of unknown 
function to identify molecules able to act as an insulin sensitizer, 
FGF21 appeared to induce glucose uptake in 3T3-L1 adipocytes in-
dependently of insulin action with a magnitude of effect compara-
ble to insulin [22]. Further studies demonstrated that this effect 
required FGF21-induced upregulation of the insulin-independent 
glucose transporter GLUT-1 [73]. This was the first identified func-
tion of the molecule since its discovery in 2000. However, accord-
ing to further research, glucose uptake with GLUT 1 is not mean-
ingful in vivo, and FGF21 exerts its glucose-lowering properties 
through the potent and acute insulin-sensitizing effect on periph-
eral tissues.

In diet-induced obese mice, a single injection of FGF21 resulted 
in an acute decrease in plasma glucose by more than 50 %, which 
occurred within one hour following administration, an effect de-
pendent on increased IS [74]. Likewise, intraperitoneal injection of 
FGF21 alone to wild-type ad libitum fed mice does not affect plas-
ma glucose levels, whereas co-administration with insulin substan-
tially enhances insulin-dependent plasma glucose disposal, an ef-
fect exceeding that of insulin alone [69]. An acute glucose-lower-
ing effect depends primarily on FGF21 to enhance peripheral 
glucose disposal in BAT [69, 74, 75]. Interestingly, adipose tis-
sue-devoid lipodystrophic mice do not exhibit the insulin-sensitiz-
ing effect of FGF21 [76]. Similarly, ablation of KLB from adipocytes 
completely abolished the hypoglycemic action of FGF21, whereas 
KLB removal from the liver does not [66, 69]. This suggests that 
FGF21 exerts its hypoglycemic properties primarily by enhancing 
peripheral glucose disposal, and to a lesser extent influencing he-
patic glucose production. BAT dissipates energy as heat, unlike WAT 
that functions to store energy. This is achieved through the expres-
sion of uncoupling protein-1 (UCP-1) that destroys the inner mito-
chondrial membrane hydrogen gradient, allowing protons to pen-
etrate the inside of the mitochondria with their electrochemical 
energy dissipated as heat. BAT in rodents [77] and humans [78] is 
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extremely insulin sensitive and exhibits a high capacity for glucose 
uptake, which is used to produce heat. Moreover, the ability of BAT 
to dispose of glucose and increase IS is similar in extent to skeletal 
muscle [78]. FGF21 exerts its acute insulin-sensitizing action pri-
marily in brown adipocytes by inducing UCP-1 expression [69, 79]. 
This is shown by experiments using either mice with the KLB gene 
removed or mice with genetically ablated UCP-1, as neither are able 
to exert the acute hypoglycemic action of FGF21 [69, 80]. Con-
versely to BAT, white adipose tissue is not important for the FGF21 
glucose-lowering effect. However, the administration of FGF21 en-
hances IS of white adipocytes resulting in suppression of lipolysis 
[13, 69, 81].

Although the principal hypoglycemic action of FGF21 is accom-
plished by an acute increase in peripheral insulin sensitivity of BAT, 
suppression of hepatic glucose production has also been observed 
[82]. It has been suggested that this effect on hepatic IS might be 
an indirect action in concert with adiponectin secretion. However, 
the data demonstrate divergent results on this issue. As mentioned 
previously, pharmacological doses of FGF21 induce adiponectin 
secretion in WAT [67, 68]. Adiponectin secretion is markedly en-
hanced in transgenic mice overexpressing the FGF21 gene (Fg-
f21Tg) and suppressed in Fgf21–/– mice [23]. Furthermore, mice 
with an abolished FGFR1 (Fgfr1–/–) do not demonstrate the rise in 
adiponectin secretion in response to FGF21 administration when 
compared to wild-type mice [83]. Adiponectin reduces intercellu-
lar lipids accumulation, primarily ceramides, in insulin-sensitive tis-
sues [67]. Intrahepatic ceramide accumulation contributes to lipo-
toxicity and insulin resistance (IR). It has been suggested that FGF21 
enhances hepatic IS indirectly, through induction of adiponectin 
secretion in adipose tissue and the beneficial effect of the adipokine 
in the liver. Moreover, clinical studies of FGF21 analogues demon-
strate that FGF21 strongly elevates plasma adiponectin levels in 
patients with obesity and type 2 diabetes [8–10, 70].

However, it has been demonstrated that the hypoglycemic ac-
tion of FGF21 remains unchanged in adiponectin knock-out mice 
(Adipoq-KO) [69]. Recent studies have provided different results, 
however, suggesting that FGF21 is induced locally and acts in a par-
acrine manner in adipose tissue, where it stimulates adiponectin 
secretion into the bloodstream, which further enhances FGF21 pro-
duction in the liver in a feed-forward manner [84].

The interrelationship between FGF21 and adiponectin was con-
firmed in both cell culture and following the administration of phar-
macological doses of FGF21 analogues in humans. These studies 
demonstrate conflicting results and do not fully reflect the physi-
ology. Therefore, further research is indispensable to evaluate the 
interdependence of FGF21 and adiponectin in physiological con-
ditions in vivo.

FGF21 as a metabolic regulator
Serum FGF21 is generated in the liver and released into the blood-
stream in response to nutritional stimuli, providing information to 
the brain about systemic nutrient status, making the CNS the main 
target of the endocrine function of FGF21. The signal is processed 
in the ventromedial hypothalamus (VMH) glutaminergic neurons 
which suppress sucrose intake in response to increased plasma glu-
cose concentration [85] and dorsal vagal complex of the medulla 

oblongata [86]. The CNS coordinates further actions of FGF21 in-
cluding a suppressed preference for sugar and alcohol intake, in-
creased physical activity, regulation of circadian rhythm and an in-
crease in activity time, enhancement in sympathetic-nerve activi-
ty from the brainstem to BAT, which promotes thermogenesis, 
increases liver IS and reduces hepatic TG deposition. This complex 
action results in protection against weight gain by adjusting appe-
tite and resting energy expenditure (REE) to macronutrient intake. 
However, there is likely some interspecies variability and plasticity 
of FGF21 action in the CNS, which customizes its action to be the 
most effective in the particular situation. This can be evidenced in 
mice, where enhanced thermogenesis is crucial to maintain stable 
body mass, whereas in humans, suppression of sugar intake is the 
most effective way to prevent weight gain [87]. However, when a 
certain mechanism is not effective, the alternative pathway may 
also be triggered. In mice with genetically ablated UCP-1, there was 
the same bodyweight reduction as in their wild-type counterparts, 
due to either suppressed food intake [88] or increased physical ac-
tivity [89].

FGF21 controls macronutrient preference by suppressing the 
appetite for simple sugar, and genome-wide association studies 
(GWAS) identified single nucleotide polymorphisms (SNP) in the 
FGF21 gene associated with increased sweet taste preference [90–
92]. In humans, the main stimulus for FGF21 hepatic secretion is 
simple sugar intake, especially fructose as mentioned previously. 
Circulating FGF21 then exerts its action in the VMH, decreasing the 
excitability of glutaminergic neurons sensible to high glucose 
serum levels, which in turn diminishes sweet taste preference and 
decreases sucrose intake [85].

Besides suppressing simple sugar intake, FGF21 increases the 
resting metabolic rate through intensifying BAT thermogenesis, 
which activates weight loss and maintains core body temperature. 
In mouse pups, consumption of fatty acids contained in maternal 
milk resulted in increased hepatic FGF21 synthesis, and in turn en-
hanced expression of brown adipocytes thermogenesis genes 
(UCP-1, PGC1α, DIO-2) enabling core body temperature mainte-
nance [79]. Besides endocrine action in BAT, cold exposure stimu-
lates local production of FGF21 in adipocytes. In mice, FGF21 is 
generated locally in BAT in response to cold exposure, which stim-
ulates non-shivering thermogenesis to maintain core body tem-
perature [93, 94] and this effect is essential in rodents, but to a less-
er degree also occurs in humans [95]. As mentioned above, FGF21 
secreted from the liver or generated locally in adipose tissue en-
hances thermogenesis genes in brown adipocytes, including UCP-1 
controlling energy dissipation as heat [79] and PGC1α activating 
mitochondrial biogenesis and intensifying their function [25, 96]. 
FGF21 also induces browning of white adipocytes and generation 
of dispersed brown-like adipocytes in white adipose depots [96]. 
Therefore, adipose tissue is indispensable for systemic FGF21 ac-
tion. In mice with FGFR1 knock-out (FR1KO) selective for adipose 
tissue, which lack FGF21 signaling in adipocytes, the majority of 
systemic action of FGF21 is abolished including plasma glucose, TG 
and insulin lowering and increase in REE [83]. FGF21 expression in 
adipocytes is stimulated through the transcription factor PPARγ 
that is activated by FFA, and induces adipocytes differentiation and 
TG storage, preventing their ectopic accumulation. FGF21 aug-
ments in a feed-forward manner PPARγ function, by diminishing 
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post- translational receptor inactivation in the sumoylation process 
[97]. Therefore, FGF21 enhances the pleiotropic action of PPARγ 
by increasing IS, anti-inflammatory properties, suppressing oxida-
tive stress, and ameliorating endothelium function.

FGF21 in future therapy
Beneficial FGF21 function has encouraged many attempts to use it 
as a therapeutic agent to treat obesity-related comorbidities in-
cluding type 2 diabetes mellitus, dyslipidemia, NAFLD, and NASH. 
Native FGF21 is not appropriate for therapeutic use, because of 
poor pharmacodynamic properties, including a short half-life of 
0.5–1 hour, proteolytic cleavage by serum proteases, and tenden-
cy to precipitate into insoluble aggregates. Therefore, long-acting 
analogues conjugated to PEG or immunoglobulins, which are re-
sistant to aggregation or proteolytic cleavage have been synthe-
sized. Another group of potential therapeutic agents represents 
FGF21 receptor agonists including bispecific monoclonal antibod-
ies which bind to the FGFR1-KLB complex, and also avimers (avid-
ity multimers) that are artificially constructed proteins that bind 
specific antigens, which activate FGFR1 and KLB [57]. FGF21 ana-
logues were intended to treat type 2 diabetes, because of their pro-
found hypoglycemic effect in mice and non-human primates. How-
ever, they did not induce a significant fall in plasma glucose levels 
in humans. Instead, they decrease serum lipids, increase serum ad-
iponectin levels, and exert a diverse effect on weight reduction. In 
different species, particular analogues differ in hypoglycemic, li-
pid-lowering, and weight-reducing properties, which results from 
interspecies differences in FGF21 action and divergent biological 
activity.

At present, FGF21 analogues and mimetics appear to be an ef-
fective strategy in NAFLD and NASH treatment. In a phase IIa clin-
ical trial using the FGF21 analogue pegbelfermin in patients with 
NASH, no suppression of HbA1c was noted in the serum, which was 
the primary endpoint of the study, but there was a significant re-
duction in N-terminal type III collagen propeptide (PRO-C3) serum 
level, a marker of hepatic fibrosis [98]. Another multi-center clini-
cal trial using pegbelfermin, in patients with biopsy confirmed 
NASH, revealed a decrease in hepatic fat content determined by 
the proton density-weighted MRI fat fraction by 30 % in over 50 % 
of subjects. Improvement in biochemical hepatic fibrosis and in
jury markers (Pro-C3, ALT, AST), and increased adiponectin serum 
levels were also noted [11]. Subsequent studies of the safety and 
efficacy of FGF21 mimetic AKR-001 and NGM-313 in NASH are also 
underway [57, 99]. Concomitantly, there are safety concerns about 
side effects of FGF21 analogues, drugs intended for prolonged, and 
potentially lifelong treatment. Administration of one discontinued 
analogue evoked a rise in heart rate and blood pressure [8]. How-
ever, this effect was specifically attributable to a certain analogue, 
not related to them all. Furthermore, administration of pharmaco-
logical doses of FGF21 in mice induces bone loss, which raises con-
cerns about the effects on bone metabolism [100]. Indeed, in hu-
mans increases in bone turnover markers were observed following 
injection of certain analogues, but not others [8] and this effect 
may be secondary to the induced weight loss. A further problem is 
the immunogenicity of analogues that arises from the induction 

of FGF21-antibodies, which have been observed in 50 % of pegbel-
fermin treated patients [98]. However, FGF21 analogues are gen-
erally well-tolerated, and most side-effects are gastrointestinal, re-
lated to their interaction with FGF19 and bile acid metabolism.

The complex and still unresolved biological action of FGF21 has 
given rise to new insight into FGF21 analogues and their therapeu-
tic potential. Initially trialed as antidiabetic drugs, these are finally 
recognized as a successful strategy to treat other obesity-related 
comorbidities such as NAFLD and NASH. Until the present time, 
specific treatment was not available to these patients, other than 
mildly-effective diet therapy. Therefore, in the future FGF21 ana-
logues may become a successful strategy to treat the cluster of obe-
sity-related diseases, as a complement to antidiabetic drugs. How-
ever, further clinical trials with larger sample sizes are needed to 
evaluate whether prolonged administration of FGF21 analogues by 
decreasing hepatic and plasma lipid levels can reduce NASH pro-
gression and cardiovascular risk.

FGF21: current knowledge and controversies
Current knowledge only partially elucidates the complicated biol-
ogy of FGF21. Although target tissues have been identified, exact 
intracellular pathways of FGF21 signaling within these tissues re-
main unknown. Their recognition is crucial for future targeted ther-
apies designed for selective action in specific tissues and identify-
ing modifiers that may amplify FGF21 function. Furthermore, the 
mechanism of elevated FGF21 serum levels in obesity and IR re-
mains unclear. Although some animal studies suggest there is re-
sistance to FGF21 action in obese states, this is not verified in hu-
mans. It is not elucidated whether elevated serum levels of FGF21 
in obesity result from resistance to its action or compensatory in-
creased secretion. Furthermore, human studies following admin-
istration of FGF21 analogues do not reflect physiological condi-
tions. The principal FGF21 biological action of reducing hepatic fat 
content, either by direct paracrine action in the liver or indirectly 
by crosstalk with adipose tissue is still unresolved. The way of co-
ordinating whole-body energy balance including food preferenc-
es, circadian cycle, physical activity, and resting energy expendi-
ture is an important unanswered question. Although KLB expres-
sion has been documented in many dispersed neurons of the brain, 
the exact action of FGF21 in the central nervous system remains 
unrevealed. Therefore, this molecule, since discovery in 2000, still 
continues to evoke interest, leaving many questions for further re-
search.
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