Synlett 2022; 33(11): 1011-1016
DOI: 10.1055/a-1787-1159
synpacts

The Conceptual Development of a Conjunctive Olefination

Dario Filippini
a   GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, 6 Triumph Rd, Nottingham NG7 2GA, UK
b   School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
,
Mattia Silvi
a   GSK Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, 6 Triumph Rd, Nottingham NG7 2GA, UK
b   School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
› Author Affiliations
We thank the Engineering and Physical Sciences Research Council (EPSRC, New Investigator Award, Grant Number EP/V006401/1 to M.S.) for funding. M.S. thanks the University of Nottingham and the Green Chemicals Beacon of Excellence for a Nottingham Research Fellowship. D.F. thanks the School of Chemistry, University of Nottingham, for a doctoral fellowship.


Abstract

We recently discovered a functional group tolerant and transition-metal-free conjunctive olefination reaction with applications in late-stage functionalization chemistry. In this Synpacts contribution, we analyze the conceptual background that has stimulated the discovery of this reactivity and reflect on the key aspects of its development.

1 Introduction

2 Conceptual Background

2.1 Photoredox-Mediated Giese Reaction

2.2 Photoredox Radical-Polar Reactivity

3 The Development of the Process

4 Conclusion



Publication History

Received: 24 February 2022

Accepted after revision: 03 March 2022

Accepted Manuscript online:
03 March 2022

Article published online:
01 April 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Stephenson CR. J, Studer A, Curran DP. Beilstein J. Org. Chem. 2013; 9: 2778
    • 2a Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 2b Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
  • 3 Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
  • 4 Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035

    • For relevant examples, see:
    • 6a Nicewicz DA, MacMillan DW. C. Science 2008; 322: 77
    • 6b Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DW. C. Science 2014; 345: 437
    • 7a Tasker SZ, Standley EA, Jamison TF. Nature 2014; 509: 299
    • 7b Ananikov VP. ACS Catal. 2015; 5: 1964
    • 8a Noble A, McCarver SJ, MacMillan DW. C. J. Am. Chem. Soc. 2015; 137: 624
    • 8b Johnston CP, Smith RT, Allmendinger S, MacMillan DW. C. Nature 2016; 536: 322 ; see also ref. 6b
  • 9 Metal-Catalyzed Cross-Coupling Reactions, 2nd ed.; de Meijere A., Diederich F.; Wiley-VCH: Weinheim, 2004;
    • 10a Börgel J, Ritter T. Chem 2020; 6: 1877
    • 10b Guillemard L, Kaplaneris N, Ackermann L, Johansson MJ. Nat. Rev. Chem. 2021; 5: 522
    • 11a Zhang L, Lovinger GJ, Edelstein EK, Szymaniak AA, Chierchia MP, Morken JP. Science 2015; 351: 70 ; For a review on dicarbofunctionalization of alkenes, see
    • 11b Dhungana RK, KC S, Basnet P, Giri R. Chem. Rec. 2018; 18: 1314
  • 12 Filippini D, Silvi M. Nat. Chem. 2022; 14: 66
  • 13 Studer A, Curran DP. Angew. Chem. Int. Ed. 2016; 55: 58
  • 15 Giese B. Angew. Chem., Int. Ed. Engl. 1983; 22: 753
  • 16 Chu L, Ohta C, Zuo Z, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 10886
  • 17 Nawrat CC, Jamison CR, Slutskyy Y, MacMillan DW. C, Overman LE. J. Am. Chem. Soc. 2015; 137: 11270
  • 18 Wu J, Grant PS, Li X, Noble A, Aggarwal VK. Angew. Chem. Int. Ed. 2019; 58: 5697

    • For selected examples, see:
    • 19a Ramirez NP, Gonzalez-Gomez JC. Eur. J. Org. Chem. 2017; 2154
    • 19b El-Hage F, Schöll C, Pospech J. J. Org. Chem. 2020; 85: 13853
    • 19c Dang HT, Haug GC, Nguyen VT, Vuong NT. H, Nguyen VD, Arman HD, Larionov OV. ACS Catal. 2020; 10: 11448
  • 20 Gant KanegusukuA. L, Roizen JL. Angew. Chem. Int. Ed. 2021; 60: 21116

    • For reviews, see:
    • 21a Wiles RJ, Molander GA. Isr. J. Chem. 2020; 60: 281
    • 21b Pitzer L, Schwarz JL, Glorius F. Chem. Sci. 2019; 10: 8285
    • 21c Donabauer K, König B. Acc. Chem. Res. 2021; 54: 242
  • 22 Sahoo B, Li JL, Glorius F. Angew. Chem. Int. Ed. 2015; 54: 11577
  • 23 Silvi M, Sandford C, Aggarwal VK. J. Am. Chem. Soc. 2017; 139: 5736
    • 24a Koike T, Akita M. Acc. Chem. Res. 2016; 49: 1937
    • 24b Yasu Y, Koike T, Akita M. Angew. Chem. Int. Ed. 2012; 51: 9567
  • 25 Teruo U, Sumi I. Tetrahedron Lett. 1990; 31: 3579
    • 26a Phelan JP, Lang SB, Compton JS, Kelly CB, Dykstra R, Gutierrez O, Molander GA. J. Am. Chem. Soc. 2018; 140: 8037
    • 26b Shu C, Mega RS, Andreassen BJ, Noble A, Aggarwal VK. Angew. Chem. Int. Ed. 2018; 57: 15430
  • 27 Xuan J, Xia X.-D, Zeng T.-T, Feng Z.-J, Chen J.-R, Lu L.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2014; 53: 5653
  • 28 Yatham VR, Shen Y, Martin R. Angew. Chem. Int. Ed. 2017; 56: 10915
  • 29 Donabauer K, Maity M, Berger AL, Huff GS, Crespi S, König B. Chem. Sci. 2019; 10: 5162
  • 30 Shang T.-Y, Lu L.-H, Cao Z, Liu Y, He W.-M, Yu B. Chem. Commun. 2019; 55: 5408
  • 31 Wittig G. Science 1980; 210: 600
    • 32a Barton DH. R, Togo H, Zard SZ. Tetrahedron Lett. 1985; 26: 6349
    • 32b Barton DH. R, Boivin J, Crépon E, Sarma J, Togo H, Zaid SZ. Tetrahedron 1991; 47: 7091
  • 33 Maryanoff BE, Reitz AB. Chem. Rev. 1989; 89: 863

    • For early examples using UV light instead of visible light, see:
    • 34a Golub MA. J. Am. Chem. Soc. 1959; 81: 54
    • 34b Moussebois C, Dale J. J. Chem. Soc. C 1966; 260