Semin Liver Dis 2022; 42(02): 113-121
DOI: 10.1055/a-1792-4240
Review Article

Circadian Regulation of Gene Expression and Metabolism in the Liver

Dongyin Guan
1   Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas
,
Mitchell A. Lazar
2   Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
3   Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
4   Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
› Author Affiliations
Funding This work was supported by the JPB Foundation (M.A.L.), the Cox Medical Research Institute (M.A.L.), Cancer Prevention and Research Institute of Texas (RR210029, D.G.), as well as by National Institutes of Health grants (R01-DK045586, M.A.L.; and K01-DK125602, D.G.).


Abstract

Circadian rhythms are approximately 24-hour cycles of variation in physiological processes, gene expression, and behavior. They result from the interplay of internal biological clocks with daily environmental rhythms, including light/dark and feeding/fasting. Note that 24-hour rhythms of liver metabolic processes have been known for almost 100 years. Modern studies reveal that, like metabolism, hepatic gene expression is highly rhythmic. Genetic or environmental changes can disrupt the circadian rhythms of the liver, leading to metabolic disorders and hepatocellular carcinoma. In this review, we summarize the current understanding of mechanisms regulating rhythmic gene expression in the liver, highlighting the roles of transcription factors that comprise the core clock molecular as well as noncanonical regulators. We emphasize the plasticity of circadian rhythms in the liver as it responds to multiple inputs from the external and internal environments as well as the potential of circadian medicine to impact liver-related diseases.



Publication History

Accepted Manuscript online:
09 March 2022

Article published online:
23 June 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Bass J, Lazar MA. Circadian time signatures of fitness and disease. Science 2016; 354 (6315): 994-999
  • 2 Sinturel F, Gos P, Petrenko V. et al. Circadian hepatocyte clocks keep synchrony in the absence of a master pacemaker in the suprachiasmatic nucleus or other extrahepatic clocks. Genes Dev 2021; 35 (5-6): 329-334
  • 3 Guan D, Xiong Y, Trinh TM. et al. The hepatocyte clock and feeding control chronophysiology of multiple liver cell types. Science 2020; 369 (6509): 1388-1394
  • 4 Greco CM, Koronowski KB, Smith JG. et al. Integration of feeding behavior by the liver circadian clock reveals network dependency of metabolic rhythms. Sci Adv 2021; 7 (39) eabi7828
  • 5 Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A 2014; 111 (45) 16219-16224
  • 6 Allada R, Bass J. Circadian mechanisms in medicine. N Engl J Med 2021; 384 (06) 550-561
  • 7 Sollberger A. The control of circadian glycogen rhythms. Ann N Y Acad Sci 1964; 117: 519-554
  • 8 Daan S. The Colin S. Pittendrigh Lecture. Colin Pittendrigh, Jürgen Aschoff, and the natural entrainment of circadian systems. J Biol Rhythms 2000; 15 (03) 195-207
  • 9 Konopka RJ, Benzer S. Clock mutants of drosophila melanogaster. Proc Natl Acad Sci U S A 1971; 68 (09) 2112-2116
  • 10 Sehgal A. Physiology flies with time. Cell 2017; 171 (06) 1232-1235
  • 11 Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 2017; 18 (03) 164-179
  • 12 Kim YH, Marhon SA, Zhang Y, Steger DJ, Won KJ, Lazar MA. Rev-erbα dynamically modulates chromatin looping to control circadian gene transcription. Science 2018; 359 (6381): 1274-1277
  • 13 Koike N, Yoo SH, Huang HC. et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 2012; 338 (6105): 349-354
  • 14 Guan D, Lazar MA. Interconnections between circadian clocks and metabolism. J Clin Invest 2021; 131 (15) 131
  • 15 Chen P, Kakan X, Wang S. et al. Deletion of clock gene Per2 exacerbates cholestatic liver injury and fibrosis in mice. Exp Toxicol Pathol 2013; 65 (04) 427-432
  • 16 Kettner NM, Voicu H, Finegold MJ. et al. Circadian homeostasis of liver metabolism suppresses hepatocarcinogenesis. Cancer Cell 2016; 30 (06) 909-924
  • 17 Cho H, Zhao X, Hatori M. et al. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 2012; 485 (7396): 123-127
  • 18 Zhuang X, Forde D, Tsukuda S. et al. Circadian control of hepatitis B virus replication. Nat Commun 2021; 12 (01) 1658
  • 19 Bugge A, Feng D, Everett LJ. et al. Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function. Genes Dev 2012; 26 (07) 657-667
  • 20 Zhang Y, Papazyan R, Damle M. et al. The hepatic circadian clock fine-tunes the lipogenic response to feeding through RORα/γ. Genes Dev 2017; 31 (12) 1202-1211
  • 21 Zhang Y, Fang B, Emmett MJ. et al. Gene regulation. Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock. Science 2015; 348 (6242): 1488-1492
  • 22 Storch KF, Lipan O, Leykin I. et al. Extensive and divergent circadian gene expression in liver and heart. Nature 2002; 417 (6884): 78-83
  • 23 Beytebiere JR, Trott AJ, Greenwell BJ. et al. Tissue-specific BMAL1 cistromes reveal that rhythmic transcription is associated with rhythmic enhancer-enhancer interactions. Genes Dev 2019; 33 (5-6): 294-309
  • 24 Yeung J, Mermet J, Jouffe C. et al. Transcription factor activity rhythms and tissue-specific chromatin interactions explain circadian gene expression across organs. Genome Res 2018; 28 (02) 182-191
  • 25 Wu S, Mar-Heyming R, Dugum EZ. et al. Upstream transcription factor 1 influences plasma lipid and metabolic traits in mice. Hum Mol Genet 2010; 19 (04) 597-608
  • 26 Shimomura K, Kumar V, Koike N. et al. Usf1, a suppressor of the circadian clock mutant, reveals the nature of the DNA-binding of the CLOCK:BMAL1 complex in mice. eLife 2013; 2: e00426
  • 27 Altman BJ, Hsieh AL, Sengupta A. et al. MYC disrupts the circadian clock and metabolism in cancer cells. Cell Metab 2015; 22 (06) 1009-1019
  • 28 Lamia KA, Papp SJ, Yu RT. et al. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 2011; 480 (7378): 552-556
  • 29 Peek CB, Affinati AH, Ramsey KM. et al. Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice. Science 2013; 342 (6158): 1243417
  • 30 Levine DC, Hong H, Weidemann BJ. et al. NAD+ controls circadian reprogramming through PER2 nuclear translocation to counter aging. Mol Cell 2020; 78 (05) 835-849.e7 , e837
  • 31 Levine DC, Ramsey KM, Bass J. Circadian NAD(P)(H) cycles in cell metabolism. Semin Cell Dev Biol 2021:S1084-9521(21)00195-6
  • 32 Droin C, Kholtei JE, Bahar Halpern K. et al. Space-time logic of liver gene expression at sub-lobular scale. Nat Metab 2021; 3 (01) 43-58
  • 33 Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 2000; 14 (23) 2950-2961
  • 34 Mukherji A, Kobiita A, Chambon P. Shifting the feeding of mice to the rest phase creates metabolic alterations, which, on their own, shift the peripheral circadian clocks by 12 hours. Proc Natl Acad Sci U S A 2015; 112 (48) E6683-E6690
  • 35 Mukherji A, Kobiita A, Damara M. et al. Shifting eating to the circadian rest phase misaligns the peripheral clocks with the master SCN clock and leads to a metabolic syndrome. Proc Natl Acad Sci U S A 2015; 112 (48) E6691-E6698
  • 36 Xin H, Deng F, Zhou M. et al. A multi-tissue multi-omics analysis reveals distinct kineztics in entrainment of diurnal transcriptomes by inverted feeding. iScience 2021; 24 (04) 102335
  • 37 Le Minh N, Damiola F, Tronche F, Schütz G, Schibler U. Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. EMBO J 2001; 20 (24) 7128-7136
  • 38 Vollmers C, Gill S, DiTacchio L, Pulivarthy SR, Le HD, Panda S. Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc Natl Acad Sci U S A 2009; 106 (50) 21453-21458
  • 39 Weger BD, Gobet C, David FPA. et al. Systematic analysis of differential rhythmic liver gene expression mediated by the circadian clock and feeding rhythms. Proc Natl Acad Sci U S A 2021; 118 (03) 118
  • 40 Kohsaka A, Laposky AD, Ramsey KM. et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 2007; 6 (05) 414-421
  • 41 Eckel-Mahan KL, Patel VR, de Mateo S. et al. Reprogramming of the circadian clock by nutritional challenge. Cell 2013; 155 (07) 1464-1478
  • 42 Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002; 109 (09) 1125-1131
  • 43 Lee JM, Wagner M, Xiao R. et al. Nutrient-sensing nuclear receptors coordinate autophagy. Nature 2014; 516 (7529): 112-115
  • 44 Guan D, Xiong Y, Borck PC. et al. Diet-induced circadian enhancer remodeling synchronizes opposing hepatic lipid metabolic processes. Cell 2018; 174 (04) 831-842.e12 , e812
  • 45 Tognini P, Murakami M, Liu Y. et al. Distinct circadian signatures in liver and gut clocks revealed by ketogenic diet. Cell Metab 2017; 26 (03) 523-538.e5 , e525
  • 46 Gaucher J, Kinouchi K, Ceglia N. et al. Distinct metabolic adaptation of liver circadian pathways to acute and chronic patterns of alcohol intake. Proc Natl Acad Sci U S A 2019; 116 (50) 25250-25259
  • 47 Masri S, Papagiannakopoulos T, Kinouchi K. et al. Lung adenocarcinoma distally rewires hepatic circadian homeostasis. Cell 2016; 165 (04) 896-909
  • 48 Thaiss CA, Levy M, Korem T. et al. Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell 2016; 167 (06) 1495-1510.e12 , e1412
  • 49 Sato S, Solanas G, Peixoto FO. et al. Circadian reprogramming in the liver identifies metabolic pathways of aging. Cell 2017; 170 (04) 664-677.e11 , e611
  • 50 Sulli G, Manoogian ENC, Taub PR, Panda S. Training the circadian clock, clocking the drugs, and drugging the clock to prevent, manage, and treat chronic diseases. Trends Pharmacol Sci 2018; 39 (09) 812-827
  • 51 Imaizumi H, Takahashi A, Tanji N. et al. The association between sleep duration and non-alcoholic fatty liver disease among Japanese men and women. Obes Facts 2015; 8 (04) 234-242
  • 52 Royse KE, El-Serag HB, Chen L. et al. Sleep duration and risk of liver cancer in postmenopausal women: the Women's Health Initiative Study. J Womens Health (Larchmt) 2017; 26 (12) 1270-1277
  • 53 Adlanmerini M, Krusen BM, Nguyen HCB. et al. REV-ERB nuclear receptors in the suprachiasmatic nucleus control circadian period and restrict diet-induced obesity. Sci Adv 2021; 7 (44) eabh2007
  • 54 Hassan SA, Schmithals C, von Harten M, Piiper A, Korf HW, von Gall C. Time-dependent changes in proliferation, DNA damage and clock gene expression in hepatocellular carcinoma and healthy liver of a transgenic mouse model. Int J Cancer 2021; 148 (01) 226-237
  • 55 Hassan SA, Ali AAH, Sohn D. et al. Does timing matter in radiotherapy of hepatocellular carcinoma? An experimental study in mice. Cancer Med 2021; 10 (21) 7712-7725
  • 56 Everett LJ, Lazar MA. Nuclear receptor Rev-erbα: up, down, and all around. Trends Endocrinol Metab 2014; 25 (11) 586-592
  • 57 Yin L, Wu N, Curtin JC. et al. REV-ERBalpha, a heme sensor that coordinates metabolic and circadian pathways. Science 2007; 318 (5857): 1786-1789
  • 58 Raghuram S, Stayrook KR, Huang P. et al. Identification of heme as the ligand for the orphan nuclear receptors REV-ERBalpha and REV-ERBbeta. Nat Struct Mol Biol 2007; 14 (12) 1207-1213
  • 59 Grant D, Yin L, Collins JL. et al. GSK4112, a small molecule chemical probe for the cell biology of the nuclear heme receptor Rev-erbα. ACS Chem Biol 2010; 5 (10) 925-932
  • 60 Dierickx P, Emmett MJ, Jiang C. et al. SR9009 has REV-ERB-independent effects on cell proliferation and metabolism. Proc Natl Acad Sci U S A 2019; 116 (25) 12147-12152
  • 61 Solt LA, Griffin PR, Burris TP. Ligand regulation of retinoic acid receptor-related orphan receptors: implications for development of novel therapeutics. Curr Opin Lipidol 2010; 21 (03) 204-211
  • 62 Byun JK, Choi YK, Kang YN. et al. Retinoic acid-related orphan receptor alpha reprograms glucose metabolism in glutamine-deficient hepatoma cells. Hepatology 2015; 61 (03) 953-964
  • 63 Wang Y, Kumar N, Nuhant P. et al. Identification of SR1078, a synthetic agonist for the orphan nuclear receptors RORα and RORγ. ACS Chem Biol 2010; 5 (11) 1029-1034
  • 64 Hirota T, Lee JW, St John PC. et al. Identification of small molecule activators of cryptochrome. Science 2012; 337 (6098): 1094-1097
  • 65 Hedlund L, Lischko MM, Rollag MD, Niswender GD. Melatonin: daily cycle in plasma and cerebrospinal fluid of calves. Science 1977; 195 (4279): 686-687
  • 66 Gonciarz M, Bielański W, Partyka R. et al. Plasma insulin, leptin, adiponectin, resistin, ghrelin, and melatonin in nonalcoholic steatohepatitis patients treated with melatonin. J Pineal Res 2013; 54 (02) 154-161
  • 67 Fernández-Palanca P, Méndez-Blanco C, Fondevila F. et al. Melatonin as an antitumor agent against liver cancer: an updated systematic review. Antioxidants 2021; 10 (01) 10
  • 68 Migeon CJ, Tyler FH, Mahoney JP. et al. The diurnal variation of plasma levels and urinary excretion on 17-hydroxycorticosteroids in normal subjects, night workers and blind subjects. J Clin Endocrinol Metab 1956; 16 (05) 622-633
  • 69 Oster H, Challet E, Ott V. et al. The functional and clinical significance of the 24-hour rhythm of circulating glucocorticoids. Endocr Rev 2017; 38 (01) 3-45
  • 70 Balsalobre A, Brown SA, Marcacci L. et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 2000; 289 (5488): 2344-2347
  • 71 Hassan SA, Ali AAH, Yassine M. et al. Relationship between locomotor activity rhythm and corticosterone levels during HCC development, progression, and treatment in a mouse model. J Pineal Res 2021; 70 (03) e12724
  • 72 Martchenko SE, Martchenko A, Cox BJ. et al. Circadian GLP-1 secretion in mice is dependent on the intestinal microbiome for maintenance of diurnal metabolic homeostasis. Diabetes 2020; 69 (12) 2589-2602
  • 73 Mantovani A, Byrne CD, Targher G. Efficacy of peroxisome proliferator-activated receptor agonists, glucagon-like peptide-1 receptor agonists, or sodium-glucose cotransporter-2 inhibitors for treatment of non-alcoholic fatty liver disease: a systematic review. Lancet Gastroenterol Hepatol 2022:S2468-1253(21)00261-2
  • 74 Reinberg AE. Concepts in chronopharmacology. Annu Rev Pharmacol Toxicol 1992; 32: 51-66
  • 75 Ohdo S, Koyanagi S, Matsunaga N. Chronopharmacological strategies focused on chrono-drug discovery. Pharmacol Ther 2019; 202: 72-90
  • 76 Liu S, Brown JD, Stanya KJ. et al. A diurnal serum lipid integrates hepatic lipogenesis and peripheral fatty acid use. Nature 2013; 502 (7472): 550-554
  • 77 Cariou B, Staels B. GFT505 for the treatment of nonalcoholic steatohepatitis and type 2 diabetes. Expert Opin Investig Drugs 2014; 23 (10) 1441-1448
  • 78 Francque SM, Bedossa P, Ratziu V. et al; NATIVE Study Group. A randomized, controlled trial of the Pan-PPAR agonist lanifibranor in NASH. N Engl J Med 2021; 385 (17) 1547-1558
  • 79 Gawrieh S, Noureddin M, Loo N. et al. Saroglitazar, a PPAR-α/γ agonist, for treatment of NAFLD: a randomized controlled double-blind phase 2 trial. Hepatology 2021; 74 (04) 1809-1824
  • 80 Oishi K, Uchida D, Ishida N. Circadian expression of FGF21 is induced by PPARalpha activation in the mouse liver. FEBS Lett 2008; 582 (25-26): 3639-3642
  • 81 Verzijl CRC, Van De Peppel IP, Struik D, Jonker JW. Pegbelfermin (BMS-986036): an investigational PEGylated fibroblast growth factor 21 analogue for the treatment of nonalcoholic steatohepatitis. Expert Opin Investig Drugs 2020; 29 (02) 125-133
  • 82 Rinella ME, Dufour JF, Anstee QM. et al. Non-invasive evaluation of response to obeticholic acid in patients with NASH: results from the REGENERATE study. J Hepatol 2022; 76 (03) 536-548
  • 83 Lawitz EJ, Bhandari BR, Ruane PJ. et al. Fenofibrate mitigates hypertriglyceridemia in nonalcoholic steatohepatitis patients treated with cilofexor/firsocostat. Clin Gastroenterol Hepatol 2022:S1542-3565(22)00002-7
  • 84 Tully DC, Rucker PV, Chianelli D. et al. Discovery of tropifexor (LJN452), a highly potent non-bile acid FXR agonist for the treatment of cholestatic liver diseases and nonalcoholic steatohepatitis (NASH). J Med Chem 2017; 60 (24) 9960-9973
  • 85 Ratziu V, Rinella ME, Neuschwander-Tetri BA. et al. EDP-305 in patients with NASH: a phase II double-blind placebo-controlled dose-ranging study. J Hepatol 2022; 76 (03) 506-517
  • 86 Hughes ME, DiTacchio L, Hayes KR. et al. Harmonics of circadian gene transcription in mammals. PLoS Genet 2009; 5 (04) e1000442
  • 87 Li G, Brocker CN, Xie C. et al. Hepatic peroxisome proliferator-activated receptor alpha mediates the major metabolic effects of Wy-14643. J Gastroenterol Hepatol 2018; 33 (05) 1138-1145
  • 88 Zhao YY, Weir MA, Manno M. et al. New fibrate use and acute renal outcomes in elderly adults: a population-based study. Ann Intern Med 2012; 156 (08) 560-569
  • 89 Danis R, Akbulut S, Ozmen S, Arikan S. Rhabdomyolysis-induced acute renal failure following fenofibrate therapy: a case report and literature review. Case Rep Med 2010; 2010: 2010
  • 90 Johnson TE, Zhang X, Shi S, Umbenhauer DR. Statins and PPARalpha agonists induce myotoxicity in differentiated rat skeletal muscle cultures but do not exhibit synergy with co-treatment. Toxicol Appl Pharmacol 2005; 208 (03) 210-221
  • 91 Kumar V, Xin X, Ma J, Tan C, Osna N, Mahato RI. Therapeutic targets, novel drugs, and delivery systems for diabetes associated NAFLD and liver fibrosis. Adv Drug Deliv Rev 2021; 176: 113888
  • 92 Shao R, Yang Y, Fan K. et al. REV-ERBα agonist GSK4112 attenuates Fas-induced acute hepatic damage in mice. Int J Med Sci 2021; 18 (16) 3831-3838
  • 93 Hu W, Jiang C, Kim M, Xiao Y, Richter HJ, Guan D, Zhu K, Krusen BM, Roberts AN, Miller J. et al. Isoform-specific functions of PPARgamma in gene regulation and metabolism. Genes Dev 2022; 36: 300-312
  • 94 Lundåsen T, Gälman C, Angelin B, Rudling M. Circulating intestinal fibroblast growth factor 19 has a pronounced diurnal variation and modulates hepatic bile acid synthesis in man. J Intern Med 2006; 260 (06) 530-536