Planta Med 2023; 89(02): 119-133
DOI: 10.1055/a-1803-1744
Biological and Pharmacological Activity
Reviews

Transporter-mediated Natural Product-Drug Interactions

Yajuan Bi
1   School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
,
Xue Wang
2   Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, USA
,
Hui Ding
3   Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
,
Feng He
4   School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, Guizhou, P. R. China
,
Lifeng Han
3   Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
,
Youcai Zhang
1   School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P. R. China
› Author Affiliations
Supported by: the Science and Technology Program of Tianjin 19ZYPTJC00060
Supported by: the grants from China Resources Sanjiu Medical & Pharmaceutical Co., Ltd. 2018GFW-0330
Supported by: the grants from Tianjin Zhongxin Pharmaceutical Group Co., Ltd. 2020GKF-0364

Abstract

The increasing use of natural products in clinical practice has raised great concerns about the potential natural product-drug interactions (NDIs). Drug transporters mediate the transmembrane passage of a broad range of drugs, and thus are important determinants for drug pharmacokinetics and pharmacodynamics. Generally, transporters can be divided into ATP binding cassette (ABC) family and solute carrier (SLC) family. Numerous natural products have been identified as inhibitors, substrates, inducers, and/or activators of drug transporters. This review article aims to provide a comprehensive summary of the recent progress on the research of NDIs, focusing on the main drug transporters, such as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), organic anion transporter 1 and 3 (OAT1/OAT3), organic anion-transporting polypeptide 1B1 and 1B3 (OATP1B1/OATP1B3), organic cation transporter 2 (OCT2), multidrug and toxin extrusion protein 1 and 2-K (MATE1/MATE2-K). Additionally, the challenges and strategies of studying NDIs are also discussed.



Publication History

Received: 23 September 2021

Accepted after revision: 17 March 2022

Accepted Manuscript online:
18 March 2022

Article published online:
08 December 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Li J, Long X, Hu J, Bi J, Zhou T, Guo X, Han C, Huang J, Wang T, Xiong N, Lin Z. Multiple pathways for natural product treatment of Parkinsonʼs disease: A mini review. Phytomedicine 2019; 60: 152954 DOI: 10.1016/j.phymed.2019.152954.
  • 2 Mondal S, Bandyopadhyay S, Ghosh MK, Mukhopadhyay S, Roy S, Mandal C. Natural products: promising resources for cancer drug discovery. Anticancer Agents Med Chem 2012; 12: 49-75 DOI: 10.2174/187152012798764697.
  • 3 Zha W. Transporter-mediated natural product-drug interactions for the treatment of cardiovascular diseases. J Food Drug Anal 2018; 26: S32-S44 DOI: 10.1016/j.jfda.2017.11.008.
  • 4 Jadeja R, Devkar RV, Nammi S. Herbal medicines for the treatment of nonalcoholic steatohepatitis: current scenario and future prospects. Evid Based Complement Alternat Med 2014; 2014: 648308 DOI: 10.1155/2014/648308.
  • 5 Hao S, Zhang C, Song H. Natural products improving hyperuricemia with hepatorenal dual effects. Evid Based Complement Alternat Med 2016; 2016: 7390504 DOI: 10.1155/2016/7390504.
  • 6 van Breemen RB, Muchiri RN, Bates TA, Weinstein JB, Leier HC, Farley S, Tafesse FG. Cannabinoids block cellular entry of SARS-CoV-2 and the emerging variants. J Nat Prod 2022; 85: 176-184 DOI: 10.1021/acs.jnatprod.1c00946.
  • 7 Lahlou M. Screening of natural products for drug discovery. Expert Opin Drug Discov 2007; 2: 697-705 DOI: 10.1517/17460441.2.5.697.
  • 8 DeGorter MK, Xia CQ, Yang JJ, Kim RB. Drug transporters in drug efficacy and toxicity. Annu Rev Pharmacol Toxicol 2012; 52: 249-273 DOI: 10.1146/annurev-pharmtox-010611-134529.
  • 9 International Transporter Consortium. Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, Dahlin A, Evers R, Fischer V, Hillgren KM, Hoffmaster KA, Ishikawa T, Keppler D, Kim RB, Lee CA, Niemi M, Polli JW, Sugiyama Y, Swaan PW, Ware JA, Wright SH, Yee SW, Zamek-Gliszczynski MJ, Zhang L. Membrane transporters in drug development. Nat Rev Drug Discov 2010; 9: 215-236 DOI: 10.1038/nrd3028.
  • 10 Nigam SK. What do drug transporters really do?. Nat Rev Drug Discov 2015; 14: 29-44 DOI: 10.1038/nrd4461.
  • 11 Liang Y, Li S, Chen L. The physiological role of drug transporters. Protein Cell 2015; 6: 334-350 DOI: 10.1007/s13238-015-0148-2.
  • 12 Schlessinger A, Khuri N, Giacomini KM, Sali A. Molecular modeling and ligand docking for solute carrier (SLC) transporters. Curr Top Med Chem 2013; 13: 843-856 DOI: 10.2174/1568026611313070007.
  • 13 Strazielle N, Ghersi-Egea JF. Efflux transporters in blood-brain interfaces of the developing brain. Front Neurosci 2015; 9: 21 DOI: 10.3389/fnins.2015.00021.
  • 14 Silva R, Vilas-Boas V, Carmo H, Dinis-Oliveira RJ, Carvalho F, de Lourdes Bastos M, Remião F. Modulation of P-glycoprotein efflux pump: Induction and activation as a therapeutic strategy. Pharmacol Ther 2015; 149: 1-123 DOI: 10.1016/j.pharmthera.2014.11.013.
  • 15 Sudsakorn S, Bahadduri P, Fretland J, Lu C. 2020 FDA Drug-drug interaction guidance: A comparison analysis and action plan by pharmaceutical industrial scientists. Curr Drug Metab 2020; 21: 403-426 DOI: 10.2174/1389200221666200620210522.
  • 16 Cole S, Kerwash E, Andersson A. A summary of the current drug interaction guidance from the European Medicines Agency and considerations of future updates. Drug Metab Pharmacokinet 2020; 35: 2-11 DOI: 10.1016/j.dmpk.2019.11.005.
  • 17 Wu X, Ma J, Ye Y, Lin G. Transporter modulation by Chinese herbal medicines and its mediated pharmacokinetic herb-drug interactions. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1026: 236-253 DOI: 10.1016/j.jchromb.2015.11.024.
  • 18 Tachjian A, Maria V, Jahangir A. Use of herbal products and potential interactions in patients with cardiovascular diseases. J Am Coll Cardiol 2010; 55: 515-525 DOI: 10.1016/j.jacc.2009.07.074.
  • 19 McChesney JD. Natural products in drug discovery–organizing for success. P R Health Sci J 2002; 21: 91-95
  • 20 Negroni MS, Marengo A, Caruso D, Tayar A, Rubiolo P, Giavarini F, Persampieri S, Sangiovanni E, Davanzo F, Carugo S, Colombo ML, DellʼAgli M. High digoxinemia without major complications. Case Rep Cardiol 2019; 2019: 9707428 DOI: 10.1155/2019/9707428.
  • 21 Renslo AR. Antimalarial drug discovery: From quinine to the dream of eradication. ACS Med Chem Lett 2013; 4: 1126-1128 DOI: 10.1021/ml4004414.
  • 22 Oyebanji BO, Saba AB, Oridupa OA. Studies on the anti-inflammatory, analgesic and antipyrexic activities of betulinic acid derived from Tetracera potatoria. Afr J Tradit Complement Altern Med 2014; 11: 30-33
  • 23 Flisberg P, Rudin A, Linner R, Lundberg CJF. Pain relief and safety after major surgery. A prospective study of epidural and intravenous analgesia in 2696 patients. Acta Anaesthesiol Scand 2003; 47: 457-465 DOI: 10.1034/j.1399-6576.2003.00104.x.
  • 24 Takakura AC, Moreira TS, Laitano SC, De Luca Júnior LA, Menani JV. Central muscarinic receptors signal pilocarpine-induced salivation. J Dent Res 2003; 82: 993-997 DOI: 10.1177/154405910308201211.
  • 25 Barbuti AM, Chen ZS. Paclitaxel through the ages of anticancer therapy: Exploring its role in chemoresistance and radiation therapy. Cancers (Basel) 2015; 7: 2360-2371 DOI: 10.3390/cancers7040897.
  • 26 Nothias LF, Knight R, Dorrestein PC. Antibiotic discovery is a walk in the park. Proc Natl Acad Sci U S A 2016; 113: 14477-14479 DOI: 10.1073/pnas.1618221114.
  • 27 Altmann KH. Drugs from the oceans: Marine natural products as leads for drug discovery. Chimia (Aarau) 2017; 71: 646-652 DOI: 10.2533/chimia.2017.646.
  • 28 Pope JE, Deer TR. Ziconotide: A clinical update and pharmacologic review. Expert Opin Pharmacother 2013; 14: 957-966 DOI: 10.1517/14656566.2013.784269.
  • 29 Alonso-Alvarez S, Pardal E, Sanchez-Nieto D, Navarro M, Caballero MD, Mateos MV. Plitidepsin: Design, development, and potential place in therapy. Drug Des Devel Ther 2017; 11: 253-264 DOI: 10.2147/DDDT.S94165.
  • 30 Sweet DH. Organic anion transporter (Slc22a) family members as mediators of toxicity. Toxicol Appl Pharmacol 2005; 204: 198-215 DOI: 10.1016/j.taap.2004.10.016.
  • 31 Ikarashi R, Shibasaki K, Yamaguchi A. Immunohistochemical studies of organic anion transporters and urate transporter 1 expression in human salivary gland. Acta Odontol Scand 2013; 71: 312-316 DOI: 10.3109/00016357.2012.680904.
  • 32 Bush KT, Wu W, Lun C, Nigan SK. The drug transporter OAT3 (SLC22A8) and endogenous metabolite communication via the gut-liver-kidney axis. J Biol Chem 2017; 292: 15789-15803 DOI: 10.1074/jbc.M117.796516.
  • 33 Burckhardt G. Drug transport by Organic Anion Transporters (OATs). Pharmacol Ther 2012; 136: 106-130 DOI: 10.1016/j.pharmthera.2012.07.010.
  • 34 Lu H, Lu Z, Li X, Li G, Qiao Y, Borris RP, Zhang Y. Interactions of 172 plant extracts with human organic anion transporter 1 (SLC22A6) and 3 (SLC22A8): a study on herb-drug interactions. PeerJ 2017; 5: e3333 DOI: 10.7717/peerj.3333.
  • 35 Li X, Qiao Y, Wang X, Ma R, Li T, Zhang Y, Borris RP. Dihydrophenanthrenes from Juncus effusus as Inhibitors of OAT1 and OAT3. J Nat Prod 2019; 82: 832-839 DOI: 10.1021/acs.jnatprod.8b00888.
  • 36 Wang L, Sweet DH. Interaction of natural dietary and herbal anionic compounds and flavonoids with human organic anion transporters 1 (SLC22A6), 3 (SLC22A8), and 4 (SLC22A11). Evid Based Complement Alternat Med 2013; 2013: 612527 DOI: 10.1155/2013/612527.
  • 37 Qiao Y, Liu X, Li X, Wang X, Li C, Khutsishvili M, Alizade V, Atha D, Zhang Y, Borris RP. Biflavonoids from Juniperus oblonga inhibit organic anion transporter 3. Biochem Biophys Res Commun 2019; 509: 931-936 DOI: 10.1016/j.bbrc.2019.01.039.
  • 38 Li C, Wang X, Bi Y, Yu H, Wei J, Zhang Y, Han L, Zhang Y. Potent inhibitors of organic anion transporters 1 and 3 from natural compounds and their protective effect on aristolochic acid nephropathy. Toxicol Sci 2020; 175: 279-291 DOI: 10.1093/toxsci/kfaa033.
  • 39 Wang L, Sweet DH. Competitive inhibition of human organic anion transporters 1 (SLC22A6), 3 (SLC22A8) and 4 (SLC22A11) by major components of the medicinal herb Salvia miltiorrhiza (Danshen). Drug Metab Pharmacokinet 2013; 28: 220-228 DOI: 10.2133/dmpk.dmpk-12-rg-116.
  • 40 Li X, Wang X, Li C, Khutsishvili M, Fayvush G, Atha D, Zhang Y, Borris RP. Unusual flavones from Primula macrocalyx as inhibitors of OAT1 and OAT3 and as antifungal agents against candida rugosa. Sci Rep 2019; 9: 9230 DOI: 10.1038/s41598-019-45728-5.
  • 41 Wang X, Han L, Li G, Peng W, Gao X, Klaassen CD, Fan G, Zhang Y. From the cover: Identification of natural products as inhibitors of human Organic Anion Transporters (OAT1 and OAT3) and their protective effect on mercury-induced toxicity. Toxicol Sci 2018; 161: 321-334 DOI: 10.1093/toxsci/kfx216.
  • 42 Nguyen JT, Tian DD, Tanna RS, Hadi DL, Bansal S, Calamia JC, Arian CM, Shireman LM, Molnár B, Horváth M, Kellogg JJ, Layton ME, White JR, Cech NB, Boyce RD, Unadkat JD, Thummel KE, Paine MF. Assessing transporter-mediated natural product-drug interactions via In vitro-In vivo extrapolation: Clinical evaluation with a probe cocktail. Clin Pharmacol Ther 2021; 109: 1342-1352 DOI: 10.1002/cpt.2107.
  • 43 Konig J. Uptake transporters of the human OATP family: molecular characteristics, substrates, their role in drug-drug interactions, and functional consequences of polymorphisms. Handb Exp Pharmacol 2011; 201: 1-28 DOI: 10.1007/978-3-642-14541-4_1.
  • 44 Lee W, Ha JM, Sugiyama Y. Post-translational regulation of the major drug transporters in the families of organic anion transporters and organic anion-transporting polypeptides. J Biol Chem 2020; 295: 17349-17364 DOI: 10.1074/jbc.REV120.009132.
  • 45 Oswald S. Organic Anion Transporting Polypeptide (OATP) transporter expression, localization and function in the human intestine. Pharmacol Ther 2019; 195: 39-53 DOI: 10.1016/j.pharmthera.2018.10.007.
  • 46 Clarke JD, Novak P, Lake AD, Hardwick RN, Cherrington NJ. Impaired N-linked glycosylation of uptake and efflux transporters in human non-alcoholic fatty liver disease. Liver Int 2017; 37: 1074-1081 DOI: 10.1111/liv.13362.
  • 47 Brenner S, Klameth L, Riha J, Schölm M, Hamilton G, Bajna E, Ausch C, Reiner A, Jäger W, Thalhammer T, Buxhofer-Ausch V. Specific expression of OATPs in primary small cell lung cancer (SCLC) cells as novel biomarkers for diagnosis and therapy. Cancer Lett 2015; 356: 517-524 DOI: 10.1016/j.canlet.2014.09.025.
  • 48 Lee W, Belkhiri A, Lockhart AC, Merchant N, Glaeser H, Harris EI, Washington MK, Brunt EM, Zaika A, Kim RB, El-Rifai W. Overexpression of OATP1B3 confers apoptotic resistance in colon cancer. Cancer Res 2008; 68: 10315-10323 DOI: 10.1158/0008-5472.CAN-08-1984.
  • 49 Hamada A, Sissung T, Price DK, Danesi R, Chau CH, Sharifi N, Venzon D, Maeda K, Nagao K, Sparreboom A, Mitsuya H, Dahut WL, Figg WD. Effect of SLCO1B3 haplotype on testosterone transport and clinical outcome in caucasian patients with androgen-independent prostatic cancer. Clin Cancer Res 2008; 14: 3312-3318 DOI: 10.1158/1078-0432.CCR-07-4118.
  • 50 Muto M, Onogawa T, Suzuki T, Ishida T, Rikiyama T, Katayose Y, Ohuchi N, Sasano H, Abe T, Unno M. Human liver-specific organic anion transporter-2 is a potent prognostic factor for human breast carcinoma. Cancer Sci 2007; 98: 1570-1576 DOI: 10.1111/j.1349-7006.2007.00570.x.
  • 51 Montonye ML, Tian DD, Arman T, Lynch KD, Hagenbuch B, Paine MF, Clarke JD. A pharmacokinetic natural product-disease-drug interaction: A double hit of silymarin and nonalcoholic steatohepatitis on hepatic transporters in a rat model. J Pharmacol Exp Ther 2019; 371: 385-393 DOI: 10.1124/jpet.119.260489.
  • 52 Bajraktari-Sylejmani G, Weiss J. Potential risk of food-drug interactions: Citrus polymethoxyflavones and flavanones as inhibitors of the Organic Anion Transporting Polypeptides (OATP) 1B1, 1B3, and 2B1. Eur J Drug Metab Pharmacokinet 2020; 45: 809-815 DOI: 10.1007/s13318-020-00634-4.
  • 53 Mandery K, Balk B, Bujok K, Schmidt I, Fromm MF, Glaeser H. Inhibition of hepatic uptake transporters by flavonoids. Eur J Pharm Sci 2012; 46: 79-85 DOI: 10.1016/j.ejps.2012.02.014.
  • 54 Xiang Y, Liu S, Yang J, Wang Z, Zhang H, Gui C. Investigation of the interactions between flavonoids and human organic anion transporting polypeptide 1B1 using fluorescent substrate and 3D-QSAR analysis. Biochim Biophys Acta Biomembr 2020; 1862: 183210 DOI: 10.1016/j.bbamem.2020.183210.
  • 55 Fan L, Zhang W, Guo D, Tan ZR, Xu P, Li Q, Liu YZ, Zhang L, He TY, Hu DL, Wang D, Zhou HH. The effect of herbal medicine baicalin on pharmacokinetics of rosuvastatin, substrate of organic anion-transporting polypeptide 1B1. Clin Pharmacol Ther 2008; 83: 471-476 DOI: 10.1038/sj.clpt.6100318.
  • 56 Misaka S, Yatabe J, Müller F, Takano K, Kawabe K, Glaeser H, Yatabe MS, Onoue S, Werba JP, Watanabe H, Yamada S, Fromm MF, Kimura J. Green tea ingestion greatly reduces plasma concentrations of nadolol in healthy subjects. Clin Pharmacol Ther 2014; 95: 432-438 DOI: 10.1038/clpt.2013.241.
  • 57 Kim TE, Ha N, Kim Y, Kim H, Lee JW, Jeon JY, Kim MG. Effect of epigallocatechin-3-gallate, major ingredient of green tea, on the pharmacokinetics of rosuvastatin in healthy volunteers. Drug Des Devel Ther 2017; 11: 1409-1416 DOI: 10.2147/DDDT.S130050.
  • 58 Yonezawa A, Inui K. Organic cation transporter OCT/SLC22A and H(+)/organic cation antiporter MATE/SLC47A are key molecules for nephrotoxicity of platinum agents. Biochem Pharmacol 2011; 81: 563-568 DOI: 10.1016/j.bcp.2010.11.016.
  • 59 Motohashi H, Inui K. Organic cation transporter OCTs (SLC22) and MATEs (SLC47) in the human kidney. AAPS J 2013; 15: 581-588 DOI: 10.1208/s12248-013-9465-7.
  • 60 Chen Y, Li C, Yi Y, Du W, Jiang H, Zeng S, Zhou H. Organic cation transporter 1 and 3 contribute to the high accumulation of dehydrocorydaline in the heart. Drug Metab Dispos 2020; 48: 1074-1083 DOI: 10.1124/dmd.120.000025.
  • 61 Lechner C, Ishiguro N, Fukuhara A, Shimizu H, Ohtsu N, Takatani M, Nishiyama K, Washio I, Yamamura N, Kusuhara H. Impact of experimental conditions on the evaluation of interactions between multidrug and toxin extrusion proteins and candidate drugs. Drug Metab Dispos 2016; 44: 1381-1389 DOI: 10.1124/dmd.115.068163.
  • 62 Elsby R, Chidlaw S, Outteridge S, Pickering S, Radcliffe A, Sullivan R, Jones H, Butler P. Mechanistic in vitro studies confirm that inhibition of the renal apical efflux transporter multidrug and toxin extrusion (MATE) 1, and not altered absorption, underlies the increased metformin exposure observed in clinical interactions with cimetidine, trimethoprim or pyrimethamine. Pharmacol Res Perspect 2017; 5: e00357 DOI: 10.1002/prp2.357.
  • 63 Jin S, Lee S, Jeon JH, Kim H, Choi MK, Song IS. Enhanced intestinal permeability and plasma concentration of metformin in rats by the repeated administration of red ginseng extract. Pharmaceutics 2019; 11: 189 DOI: 10.3390/pharmaceutics11040189.
  • 64 Knop J, Misaka S, Singer K, Hoier E, Müller F, Glaeser H, König J, Fromm MF. Inhibitory effects of green tea and (−)-epigallocatechin gallate on transport by OATP1B1, OATP1B3, OCT1, OCT2, MATE1, MATE2-K and P-glycoprotein. PLoS One 2015; 10: e0139370 DOI: 10.1371/journal.pone.0139370.
  • 65 Wang H, Zhu C, Ying Y, Luo L, Huang D, Luo Z. Metformin and berberine, two versatile drugs in treatment of common metabolic diseases. Oncotarget 2018; 9: 10135-10146 DOI: 10.18632/oncotarget.20807.
  • 66 Shi R, Xu Z, Xu X, Jin J, Zhao Y, Wang T, Li Y, Ma Y. Organic cation transporter and multidrug and toxin extrusion 1 co-mediated interaction between metformin and berberine. Eur J Pharm Sci 2019; 127: 282-290 DOI: 10.1016/j.ejps.2018.11.010.
  • 67 Liang X, Giacomini KM. Transporters involved in metformin pharmacokinetics and treatment response. J Pharm Sci 2017; 106: 2245-2250 DOI: 10.1016/j.xphs.2017.04.078.
  • 68 Lin JH, Yamazaki M. Clinical relevance of P-glycoprotein in drug therapy. Drug Metab Rev 2003; 35: 417-454 DOI: 10.1081/dmr-120026871.
  • 69 Mao Q, Unadkat JD. Role of the breast cancer resistance protein (BCRP/ABCG2) in drug transport–an update. AAPS J 2015; 17: 65-82 DOI: 10.1208/s12248-014-9668-6.
  • 70 Rocchi E, Khodjakov A, Volk EL, Yang CH, Litman T, Bates SE, Schneider E. The product of the ABC half-transporter gene ABCG2 (BCRP/MXR/ABCP) is expressed in the plasma membrane. Biochem Biophys Res Commun 2000; 271: 42-46 DOI: 10.1006/bbrc.2000.2590.
  • 71 Bruyère A, Declèves X, Bouzom F, Ball K, Marques C, Treton X, Pocard M, Valleur P, Bouhnik Y, Panis Y, Scherrmann JM, Mouly S. Effect of variations in the amounts of P-glycoprotein (ABCB1), BCRP (ABCG2) and CYP3A4 along the human small intestine on PBPK models for predicting intestinal first pass. Mol Pharm 2010; 7: 1596-1607 DOI: 10.1021/mp100015x.
  • 72 Huls M, Brown CD, Windass AS, Sayer R, van den Heuvel JJ, Heemskerk S, Russel FG, Masereeuw R. The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane. Kidney Int 2008; 73: 220-225 DOI: 10.1038/sj.ki.5002645.
  • 73 Xiong J, Mao DA, Liu LQ. Research progress on the role of ABC transporters in the drug resistance mechanism of intractable epilepsy. Biomed Res Int 2015; 2015: 194541 DOI: 10.1155/2015/194541.
  • 74 Limtrakul P, Khantamat O, Pintha K. Inhibition of P-glycoprotein function and expression by kaempferol and quercetin. J Chemother 2005; 17: 86-95 DOI: 10.1179/joc.2005.17.1.86.
  • 75 Iriti M, Kubina R, Cochis A, Sorrentino R, Varoni EM, Kabała-Dzik A, Azzimonti B, Dziedzic A, Rimondini L, Wojtyczka RD. Rutin, a quercetin glycoside, restores chemosensitivity in human breast cancer cells. Phytother Res 2017; 31: 1529-1538 DOI: 10.1002/ptr.5878.
  • 76 Sjostedt N, Holvikari K, Tammela P, Kidron H. Inhibition of breast cancer resistance protein and multidrug resistance associated protein 2 by natural compounds and their derivatives. Mol Pharm 2017; 14: 135-146 DOI: 10.1021/acs.molpharmaceut.6b00754.
  • 77 Kusuhara H, Furuie H, Inano A, Sunagawa A, Yamada S, Wu C, Fukizawa S, Morimoto N, Ieiri I, Morishita M, Sumita K, Mayahara H, Fujita T, Maeda K, Sugiyama Y. Pharmacokinetic interaction study of sulphasalazine in healthy subjects and the impact of curcumin as an in vivo inhibitor of BCRP. Br J Pharmacol 2012; 166: 1793-1803 DOI: 10.1111/j.1476-5381.2012.01887.x.
  • 78 Chang YT, Wang CCN, Wang JY, Lee TE, Cheng YY, Morris-Natschke SL, Lee KH, Hung CC. Tenulin and isotenulin inhibit P-glycoprotein function and overcome multidrug resistance in cancer cells. Phytomedicine 2019; 53: 252-262 DOI: 10.1016/j.phymed.2018.09.008.
  • 79 Goebel J, Chmielewski J, Hrycyna CA. The roles of the human ATP-binding cassette transporters P-glycoprotein and ABCG2 in multidrug resistance in cancer and at endogenous sites: future opportunities for structure-based drug design of inhibitors. Cancer Drug Resist 2021; 4: 784-804 DOI: 10.20517/cdr.2021.19.
  • 80 Podszun MC, Jakobi M, Birringer M, Weiss J, Frank J. The long chain alpha-tocopherol metabolite alpha-13′-COOH and gamma-tocotrienol induce P-glycoprotein expression and activity by activation of the pregnane X receptor in the intestinal cell line LS 180. Mol Nutr Food Res 2017; DOI: 10.1002/mnfr.201600605.
  • 81 Qosa H, Batarseh YS, Mohyeldin MM, El Sayed KA, Keller JN, Kaddoumi A. Oleocanthal enhances amyloid-beta clearance from the brains of TgSwDI mice and in vitro across a human blood-brain barrier model. ACS Chem Neurosci 2015; 6: 1849-1859 DOI: 10.1021/acschemneuro.5b00190.
  • 82 Barone GW, Gurley BJ, Ketel BL, Lightfoot ML, Abul-Ezz SR. Drug interaction between St. Johnʼs wort and cyclosporine. Ann Pharmacother 2000; 34: 1013-1016 DOI: 10.1345/aph.10088.
  • 83 Igel S, Drescher S, Mürdter T, Hofmann U, Heinkele G, Tegude H, Glaeser H, Brenner SS, Somogyi AA, Omari T, Schäfer C, Eichelbaum M, Fromm MF. Increased absorption of digoxin from the human jejunum due to inhibition of intestinal transporter-mediated efflux. Clin Pharmacokinet 2007; 46: 777-785 DOI: 10.2165/00003088-200746090-00005.
  • 84 Mordel A, Halkin H, Zulty L, Amog S, Ezra D. Quinidine enhances digitalis toxicity at therapeutic serum digoxin levels. Clin Pharmacol Ther 1993; 53: 457-462 DOI: 10.1038/clpt.1993.51.
  • 85 He X, Mo L, Li ZY, Tan ZR, Chen Y, Ouyang DS. Effects of curcumin on the pharmacokinetics of talinolol in human with ABCB1 polymorphism. Xenobiotica 2012; 42: 1248-1254 DOI: 10.3109/00498254.2012.697590.
  • 86 Davis MW, Wason S, Digiacinto JL. Colchicine-antimicrobial drug interactions: What pharmacists need to know in treating gout. Consult Pharm 2013; 28: 176-183 DOI: 10.4140/TCP.n.2013.176.
  • 87 Qiu F, Zeng J, Liu S, He M, Zhu L, Ye Y, Miao P, Shen S, Jiang J. Effects of danshen ethanol extract on the pharmacokinetics of fexofenadine in healthy volunteers. Evid Based Complement Alternat Med 2014; 2014: 473213 DOI: 10.1155/2014/473213.
  • 88 Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C, Myer VE, MacKeigan JP, Porter JA, Wang YK, Cantley LC, Finan PM, Murphy LO. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 2009; 136: 521-534 DOI: 10.1016/j.cell.2008.11.044.
  • 89 Jin X, Luong TL, Reese N, Gaona H, Collazo-Velez V, Vuong C, Potter B, Sousa JC, Olmeda R, Li Q, Xie L, Zhang J, Zhang P, Reichard G, Melendez V, Marcsisin SR, Pybus BS. Comparison of MDCK-MDR1 and Caco-2 cell based permeability assays for anti-malarial drug screening and drug investigations. J Pharmacol Toxicol Methods 2014; 70: 188-194 DOI: 10.1016/j.vascn.2014.08.002.
  • 90 Elsby R, Surry DD, Smith VN, Gray AJ. Validation and application of Caco-2 assays for the in vitro evaluation of development candidate drugs as substrates or inhibitors of P-glycoprotein to support regulatory submissions. Xenobiotica 2008; 38: 1140-1164 DOI: 10.1080/00498250802050880.
  • 91 Maubon N, Le Vee M, Fossati L, Audry M, Le Ferrec E, Bolze S, Fardel O. Analysis of drug transporter expression in human intestinal Caco-2 cells by real-time PCR. Fundam Clin Pharmacol 2007; 21: 659-663 DOI: 10.1111/j.1472-8206.2007.00550.x.
  • 92 Ye D, Harder A, Fang Z, Weinheimer M, Laplanche L, Mezler M. Characterization and validation of canine P-glycoprotein-deficient MDCK II cell lines for efflux substrate screening. Pharm Res 2020; 37: 194 DOI: 10.1007/s11095-020-02895-9.
  • 93 Gartzke D, Fricker G. Establishment of optimized MDCK cell lines for reliable efflux transport studies. J Pharm Sci 2014; 103: 1298-1304 DOI: 10.1002/jps.23901.
  • 94 Kuteykin-Teplyakov K, Luna-Tortos C, Ambroziak K, Loscher W. Differences in the expression of endogenous efflux transporters in MDR1-transfected versus wildtype cell lines affect P-glycoprotein mediated drug transport. Br J Pharmacol 2010; 160: 1453-1463 DOI: 10.1111/j.1476-5381.2010.00801.x.
  • 95 Glavinas H, Kis E, Pál A, Kovács R, Jani M, Vági E, Molnár E, Bánsághi S, Kele Z, Janáky T, Báthori G, von Richter O, Koomen GJ, Krajcsi P. ABCG2 (breast cancer resistance protein/mitoxantrone resistance-associated protein) ATPase assay: a useful tool to detect drug-transporter interactions. Drug Metab Dispos 2007; 35: 1533-1542 DOI: 10.1124/dmd.106.014605.
  • 96 Xiao Y, Davidson R, Smith A, Pereira D, Zhao S, Soglia J, Gebhard D, de Morais S, Duignan DB. A 96-well efflux assay to identify ABCG2 substrates using a stably transfected MDCK II cell line. Mol Pharm 2006; 3: 45-54 DOI: 10.1021/mp050088t.
  • 97 Grandvuinet AS, Vestergaard HT, Rapin N, Steffansen B. Intestinal transporters for endogenic and pharmaceutical organic anions: The challenges of deriving in-vitro kinetic parameters for the prediction of clinically relevant drug-drug interactions. J Pharm Pharmacol 2012; 64: 1523-1548 DOI: 10.1111/j.2042-7158.2012.01505.x.
  • 98 Bi L, Chen J, Yuan X, Jiang Z, Chen W. Salvianolic acid A positively regulates PTEN protein level and inhibits growth of A549 lung cancer cells. Biomed Rep 2013; 1: 213-217 DOI: 10.3892/br.2012.33.
  • 99 Muller J, Lips KS, Metzner L, Neubert RHH, Koepsell H, Brandsch M. Drug specificity and intestinal membrane localization of human organic cation transporters (OCT). Biochem Pharmacol 2005; 70: 1851-1860 DOI: 10.1016/j.bcp.2005.09.011.
  • 100 Hagos Y, Stein D, Ugele B, Burckhardt G, Bahn A. Human renal organic anion transporter 4 operates as an asymmetric urate transporter. J Am Soc Nephrol 2007; 18: 430-439 DOI: 10.1681/ASN.2006040415.
  • 101 Shen H, Lee FY, Gan J. Ixabepilone, a novel microtubule-targeting agent for breast cancer, is a substrate for P-glycoprotein (P-gp/MDR1/ABCB1) but not breast cancer resistance protein (BCRP/ABCG2). J Pharmacol Exp Ther 2011; 337: 423-432 DOI: 10.1124/jpet.110.175604.
  • 102 Singh N, Chatterjee M, Sundar S. The overexpression of genes of thiol metabolism contribute to drug resistance in clinical isolates of visceral leishmaniasis (kala azar) in India. Parasit Vectors 2014; 7: 596 DOI: 10.1186/s13071-014-0596-1.
  • 103 Konig J, Zolk O, Singer K, Hommann C, Fromm MF. Double-transfected MDCK cells expressing human OCT1/MATE1 or OCT2/MATE1: Determinants of uptake and transcellular translocation of organic cations. Br J Pharmacol 2011; 163: 546-555 DOI: 10.1111/j.1476-5381.2010.01052.x.
  • 104 Letschert K, Komatsu M, Hummel-Eisenbeiss J, Keppler D. Vectorial transport of the peptide CCK-8 by double-transfected MDCKII cells stably expressing the organic anion transporter OATP1B3 (OATP8) and the export pump ABCC2. J Pharmacol Exp Ther 2005; 313: 549-556 DOI: 10.1124/jpet.104.081224.
  • 105 Haberkorn B, Fromm MF, Konig J. Transport of drugs and endogenous compounds mediated by human OCT1: Studies in single- and double-transfected cell models. Front Pharmacol 2021; 12: 662535 DOI: 10.3389/fphar.2021.662535.
  • 106 Hirouchi M, Kusuhara H, Onuki R, Ogilvie BW, Parkinson A, Sugiyama Y. Construction of triple-transfected cells [organic anion-transporting polypeptide (OATP) 1B1/multidrug resistance-associated protein (MRP) 2/MRP3 and OATP1B1/MRP2/MRP4] for analysis of the sinusoidal function of MRP3 and MRP4. Drug Metab Dispos 2009; 37: 2103-2111 DOI: 10.1124/dmd.109.027193.
  • 107 Kopplow K, Letschert K, Konig J, Walter B, Keppler D. Human hepatobiliary transport of organic anions analyzed by quadruple-transfected cells. Mol Pharmacol 2005; 68: 1031-1038 DOI: 10.1124/mol.105.014605.
  • 108 Swift B, Pfeifer ND, Brouwer KL. Sandwich-cultured hepatocytes: an in vitro model to evaluate hepatobiliary transporter-based drug interactions and hepatotoxicity. Drug Metab Rev 2010; 42: 446-471 DOI: 10.3109/03602530903491881.
  • 109 Fukuda H, Ohashi R, Tsuda-Tsukimoto M, Tamai I. Effect of plasma protein binding on in vitro-in vivo correlation of biliary excretion of drugs evaluated by sandwich-cultured rat hepatocytes. Drug Metab Dispos 2008; 36: 1275-1282 DOI: 10.1124/dmd.107.019026.
  • 110 Iwasaki S, Hirabayashi H, Amano N. Quantitative prediction of the extent of drug-drug interaction using a physiologically based pharmacokinetic model that includes inhibition of drug metabolism determined in cryopreserved hepatocytes. Xenobiotica 2018; 48: 770-780 DOI: 10.1080/00498254.2017.1370744.
  • 111 Cerec V, Glaise D, Garnier D, Morosan S, Turlin B, Drenou B, Gripon P, Kremsdorf D, Guguen-Guillouzo C, Corlu A. Transdifferentiation of hepatocyte-like cells from the human hepatoma HepaRG cell line through bipotent progenitor. Hepatology 2007; 45: 957-967 DOI: 10.1002/hep.21536.
  • 112 Wang D. Current research method in transporter study. Adv Exp Med Biol 2019; 1141: 203-240 DOI: 10.1007/978-981-13-7647-4_4.
  • 113 Luo Z, Liu Y, Zhao B, Tang M, Dong H, Zhang L, Lv B, Wei L. Ex vivo and in situ approaches used to study intestinal absorption. J Pharmacol Toxicol Methods 2013; 68: 208-216 DOI: 10.1016/j.vascn.2013.06.001.
  • 114 Lau YY, Wu CY, Okochi H, Benet LZ. Ex situ inhibition of hepatic uptake and efflux significantly changes metabolism: Hepatic enzyme-transporter interplay. J Pharmacol Exp Ther 2004; 308: 1040-1045 DOI: 10.1124/jpet.103.061770.
  • 115 Jaiswal S, Sharma A, Shukla M, Vaghasiya K, Rangaraj N, Lal J. Novel pre-clinical methodologies for pharmacokinetic drug-drug interaction studies: Spotlight on “humanized” animal models. Drug Metab Rev 2014; 46: 475-493 DOI: 10.3109/03602532.2014.967866.
  • 116 van de Steeg E, van Esch A, Wagenaar E, Kenworthy KE, Schinkel AH. Influence of human OATP1B1, OATP1B3, and OATP1A2 on the pharmacokinetics of methotrexate and paclitaxel in humanized transgenic mice. Clin Cancer Res 2013; 19: 821-832 DOI: 10.1158/1078-0432.CCR-12-2080.
  • 117 Gameiro M, Silva R, Rocha-Pereira C, Carmo H, Carvalho F, Bastos ML, Remião F. Cellular Models and In vitro Assays for the Screening of modulators of P-gp, MRP1 and BCRP. Molecules 2017; 22: 600 DOI: 10.3390/molecules22040600.
  • 118 Vilas-Boas V, Silva R, Palmeira A, Sousa E, Ferreira LM, Branco PS, Carvalho F, Bastos Mde L, Remião F. Development of novel rifampicin-derived P-glycoprotein activators/inducers. synthesis, in silico analysis and application in the RBE4 cell model, using paraquat as substrate. PLoS One 2013; 8: e74425 DOI: 10.1371/journal.pone.0074425.
  • 119 Silva R, Carmo H, Vilas-Boas V, Barbosa DJ, Palmeira A, Sousa E, Carvalho F, Bastos Mde L, Remião F. Colchicine effect on P-glycoprotein expression and activity: in silico and in vitro studies. Chem Biol Interact 2014; 218: 50-62 DOI: 10.1016/j.cbi.2014.04.009.
  • 120 Zhang YK, Zhang XY, Zhang GN, Wang YJ, Xu H, Zhang D, Shukla S, Liu L, Yang DH, Ambudkar SV, Chen ZS. Selective reversal of BCRP-mediated MDR by VEGFR-2 inhibitor ZM323881. Biochem Pharmacol 2017; 132: 29-37 DOI: 10.1016/j.bcp.2017.02.019.
  • 121 Zhang X, Shirahatti NV, Mahadevan D, Wright SH. A conserved glutamate residue in transmembrane helix 10 influences substrate specificity of rabbit OCT2 (SLC22A2). J Biol Chem 2005; 280: 34813-34822 DOI: 10.1074/jbc.M506342200.
  • 122 Gupta CL, Akhtar S, Bajpai P. In silico protein modeling: possibilities and limitations. EXCLI J 2014; 13: 513-515
  • 123 MacKay K, Kusalik A. Computational methods for predicting 3D genomic organization from high-resolution chromosome conformation capture data. Brief Funct Genomics 2020; 19: 292-308 DOI: 10.1093/bfgp/elaa004.
  • 124 Gueniche N, Huguet A, Bruyere A, Habauzit D, Le Hegarat L, Fardel O. Comparative in silico prediction of P-glycoprotein-mediated transport for 2010–2020 US FDA-approved drugs using six Web-tools. Biopharm Drug Dispos 2021; 42: 393-398 DOI: 10.1002/bdd.2299.
  • 125 Werba JP, Misaka S, Giroli MG, Shimomura K, Amato M, Simonelli N, Vigo L, Tremoli E. Update of green tea interactions with cardiovascular drugs and putative mechanisms. J Food Drug Anal 2018; 26: S72-S77 DOI: 10.1016/j.jfda.2018.01.008.
  • 126 Fardel O, Kolasa E, Le Vee M. Environmental chemicals as substrates, inhibitors or inducers of drug transporters: Implication for toxicokinetics, toxicity and pharmacokinetics. Expert Opin Drug Metab Toxicol 2012; 8: 29-46 DOI: 10.1517/17425255.2012.637918.
  • 127 Le Vee M, Bacle A, Bruyere A, Fardel O. Neonicotinoid pesticides poorly interact with human drug transporters. J Biochem Mol Toxicol 2019; 33: e22379 DOI: 10.1002/jbt.22379.
  • 128 Chedik L, Bruyere A, Le Vee M, Stieger B, Denizot C, Parmentier Y, Potin S, Fardel O. Inhibition of human drug transporter activities by the pyrethroid pesticides allethrin and tetramethrin. PLoS One 2017; 12: e0169480 DOI: 10.1371/journal.pone.0169480.
  • 129 Malati CY, Robertson SM, Hunt JD, Chairez C, Alfaro RM, Kovacs JA, Penzak SR. Influence of Panax ginseng on cytochrome P450 (CYP)3A and P-glycoprotein (P-gp) activity in healthy participants. J Clin Pharmacol 2012; 52: 932-939 DOI: 10.1177/0091270011407194.
  • 130 Taskar KS, Pilla Reddy V, Burt H, Posada MM, Varma M, Zheng M, Ullah M, Emami Riedmaier A, Umehara KI, Snoeys J, Nakakariya M, Chu X, Beneton M, Chen Y, Huth F, Narayanan R, Mukherjee D, Dixit V, Sugiyama Y, Neuhoff S. Physiologically-based pharmacokinetic models for evaluating membrane transporter mediated drug-drug interactions: Current capabilities, case studies, future opportunities, and recommendations. Clin Pharmacol Ther 2020; 107: 1082-1115 DOI: 10.1002/cpt.1693.