Synlett 2022; 33(14): 1448-1452
DOI: 10.1055/a-1817-1038
cluster
Organic Chemistry in Thailand

Accelerated Decomposition of Potassium Permanganate in Ferrocenium Ion as Ferrocenium-Doped Manganese(IV) Oxide for Selective Oxidation of Alcohols

Peerapong Chumkaeo
a   NANOCAST Laboratory, Center for Catalysis Science and Technology (CAST), Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, 272 Rama VI Rd., Ratchathewi, Bangkok 10400, Thailand
b   Preclinical Department, Faculty of Medicine, Bangkokthonburi University, 16/10 Liapkhlong Thawiwatthana Rd., Thawi Watthana, Bangkok 10170, Thailand
,
Thinnaphat Poonsawat
a   NANOCAST Laboratory, Center for Catalysis Science and Technology (CAST), Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, 272 Rama VI Rd., Ratchathewi, Bangkok 10400, Thailand
,
Isti Yunita
a   NANOCAST Laboratory, Center for Catalysis Science and Technology (CAST), Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, 272 Rama VI Rd., Ratchathewi, Bangkok 10400, Thailand
c   Department of Chemistry Education, University Negeri Yogyakarta, Jl. Colombo No. 1, Yogyakarta 55281, Indonesia
,
Natcha Temnuch
a   NANOCAST Laboratory, Center for Catalysis Science and Technology (CAST), Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, 272 Rama VI Rd., Ratchathewi, Bangkok 10400, Thailand
,
Titiya Meechai
a   NANOCAST Laboratory, Center for Catalysis Science and Technology (CAST), Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, 272 Rama VI Rd., Ratchathewi, Bangkok 10400, Thailand
b   Preclinical Department, Faculty of Medicine, Bangkokthonburi University, 16/10 Liapkhlong Thawiwatthana Rd., Thawi Watthana, Bangkok 10170, Thailand
,
Nuttapong Kumpan
a   NANOCAST Laboratory, Center for Catalysis Science and Technology (CAST), Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, 272 Rama VI Rd., Ratchathewi, Bangkok 10400, Thailand
,
Achjana Khamthip
a   NANOCAST Laboratory, Center for Catalysis Science and Technology (CAST), Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, 272 Rama VI Rd., Ratchathewi, Bangkok 10400, Thailand
,
Laksamee Chaicharoenwimolkul Chuaitammakit
d   Chemistry, Faculty of Science and Technology, Suratthani Rajabhat University, 272 Moo 9, Surat-Nasan Rd., Khuntale, Muang, Surat Thani 84100, Thailand
,
Sanoe Chairam
e   Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Warinchamrap, Ubon Ratchathani 34190, Thailand
,
Ekasith Somsook
a   NANOCAST Laboratory, Center for Catalysis Science and Technology (CAST), Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, 272 Rama VI Rd., Ratchathewi, Bangkok 10400, Thailand
› Author Affiliations
This research has received funding support from NSRF via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation (Grant number B16F640099).


Abstract

Ferrocenium-doped manganese(IV) oxide (Fc+/MnO2) was synthesized through accelerated decomposition of KMnO4 in the presence of ferrocenium ion (Fc+) generated by concentrated sulfuric acid. The corresponding catalysts enabled highly efficient oxidation of alcohols with aldehyde or ketone.

Supporting Information



Publication History

Received: 14 February 2022

Accepted after revision: 05 April 2022

Accepted Manuscript online:
05 April 2022

Article published online:
05 May 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Nutting JE, Mao K, Stahl SS. J. Am. Chem. Soc. 2021; 143: 10565
    • 1b Zhou J, Liu L, Sun H, Wang J, Ma J, Fang P, Zhang J, Cao J, Ruan J, Tong Z. Appl. Catal., A 2021; 623: 118268
    • 1c Duarte HA, Luggren PJ, Zelin J, Sad ME, Díez VK, Di Cosimo JI. Catal. Today 2021; in press DOI: 10.1016/j.cattod.2021.10.013.
    • 1d Schultz MJ, Sigman MS. Tetrahedron 2006; 62: 8227
    • 2a Meng S.-S, Lin L.-R, Luo X, Lv H.-J, Zhao J.-L, Chan AS. C. Green Chem. 2019; 21: 6187
    • 2b Crombie CM, Lewis RJ, Taylor RL, Morgan DJ, Davies TE, Folli A, Murphy DM, Edwards JK, Qi J, Jiang H, Kiely CJ, Liu X, Skjøth-Rasmussen MS, Hutchings GJ. ACS Catal. 2021; 11: 2701
    • 3a Xiao Y, Liang L, Liu Z, Yin X, Yang X, Ding Y, Du Z. Appl. Surf. Sci. 2022; 585: 152668
    • 3b Feng T, Zhang S, Li C, Li T. Green Chem. 2022; 24: 1474
    • 3c Wang W, Wang R, Jiang X, He Z.-H, Wang K, Yang Y, Liu Z.-T. Appl. Catal., A 2022; 634: 118537
    • 3d Wan Q, Zhang J, Zhang F, Luan Y, Yao L, Zheng L, Liu L, Chen G, Cheng X. J. CO2 Util. 2021; 49: 101551
    • 3e Wang Q, Ge M, Dou Y, Yang F, Wang J, Shao Y, Huang A. Mol. Catal. 2020; 497: 111203
    • 4a Xia X, Liu S, Long Z, Zhu W, Chen G, Huang H, Tong M. Appl. Surf. Sci. 2022; 571: 151409
    • 4b Kaur G, Kaur H, Kaur M, Kumar M, Bhalla V. Aggregate 2022; e171 DOI: 10.1002/agt2.171.
    • 4c Denlinger KL, Carr P, Waddell DC, Mack J. Molecules 2020; 25: 364
    • 4d Mirhosseyni MS, Nemati F. Microporous Mesoporous Mater. 2022; 329: 111514
    • 4e Xing C, Zhang Y, Gao Y, Kang Y, Zhang S. New J. Chem. 2021; 45: 13877
    • 5a Karimi B, Ghahremani M, Vali H, Ciriminna R, Pagliaro M. Chem. Commun. 2021; 57: 8897
    • 5b Tobita F, Yasukawa T, Yamashita Y, Kobayashi S. Catal. Sci. Technol. 2022; 12: 1043
    • 5c Feng D, Dong Y, Zhang L, Ge X, Zhang W, Dai S, Qiao ZA. Angew. Chem. Int. Ed. 2020; 59: 19503
    • 5d Giorgi PD, Elizarov N, Antoniotti S. ChemCatChem 2017; 9: 1830
    • 5e Sun G, Wang F, Jin Y, Chen X, Chai P, Wu L, Teng B.-T, Huang W. J. Phys. Chem. Lett. 2021; 12: 6941
    • 6a Pakrieva E, Ribeiro AP. C, Kolobova E, Martins L, Carabineiro SA. C, German D, Pichugina D, Jiang C, Pombeiro AJ. L, Bogdanchikova N, Corberan VC, Pestryakov A. Nanomaterials 2020; 10: 151
    • 6b Tsunoyama H, Sakurai H, Negishi Y, Tsukuda T. J. Am. Chem. Soc. 2005; 127: 9374
    • 6c Hasegawa S, Takano S, Harano K, Tsukuda T. J. Am. Chem. Soc. Au 2021; 1: 660
    • 6d Yamazoe S, Koyasu K, Tsukuda T. Acc. Chem. Res. 2014; 47: 816
    • 6e Matsuo A, Hasegawa S, Takano S, Tsukuda T. Langmuir 2020; 36: 7844
    • 7a Ho WC, Chung K, Ingram AJ, Waymouth RM. J. Am. Chem. Soc. 2018; 140: 748
    • 7b Stamker E, Levy-Ontman O, Wolfson A. Polymers 2021; 13: 498
    • 7c Greco R, Tiburcio-Fortes E, Fernandez A, Marini C, Vidal-Moya A, Oliver-Meseguer J, Armentano D, Pardo E, Ferrando-Soria J, Leyva-Pérez A. Chem. Eur. J. 2022; 28: e20210378 DOI: 10.1002/chem.202103781.
    • 7d Huang X, Akdim O, Douthwaite M, Wang K, Zhao L, Lewis RJ, Pattisson S, Daniel IT, Miedziak PJ, Shaw G, Morgan DJ, Althahban SM, Davies TE, He Q, Wang F, Fu J, Bethell D, McIntosh S, Kiely CJ, Hutchings GJ. Nature 2022; 603: 271
    • 7e Wang D, Weinstein AB, White PB, Stahl SS. Chem. Rev. 2018; 118: 2636
    • 8a Tan X, Wan Y, Huang Y, He C, Zhang Z, He Z, Hu L, Zeng J, Shu D. J. Hazard. Mater. 2017; 321: 162
    • 8b Li L, Xiao B, Mu J, Zhang Y, Zhang C, Cao H, Chen R, Patra HK, Yang B, Feng S, Tabata Y, Slater NK. H, Tang J, Shen Y, Gao J. ACS Nano 2019; 13: 14283
    • 9a Hayashi E, Yamaguchi Y, Kamata K, Tsunoda N, Kumagai Y, Oba F, Hara M. J. Am. Chem. Soc. 2019; 141: 890
    • 9b Yuan Y, Yao W, Byles BW, Pomerantseva E, Amine K, Shahbazian-Yassar R, Lu J. Small Struct. 2020; 2: 2000091 DOI: 10.1002/sstr.202000091.
    • 9c Rivera-Quintero PA, Mercado DF, Ballesteros-Rueda LM. Colloid Interface Sci. Commun. 2021; 45: 100525
    • 10a Khan A, Wang H, Liu Y, Jawad A, Ifthikar J, Liao Z, Wang T, Chen Z. J. Mater. Chem. A 2018; 6: 1590
    • 10b Zhu S, Ho S.-H, Jin C, Duan X, Wang S. Environ. Sci.: Nano 2020; 7: 368
    • 11a Abulizi A, Yang GH, Okitsu K, Zhu JJ. Ultrason. Sonochem. 2014; 21: 1629
    • 11b Dawadi S, Gupta A, Khatri M, Budhathoki B, Lamichhane G, Parajuli N. Bull. Mater. Sci. 2020; 43: 277
    • 11c Bahiraei A, Behin J. J. Environ. Chem. Eng. 2020; 8: 103790
    • 12a Panahi-Kalamuei M, Motevalli K, Aliabadi M. J. Mater. Sci.: Mater. Electron. 2016; 27: 4631
    • 12b Wang W, Kan Y, Yu B, Pan Y, Liew KM, Song L, Hu Y. Composites, Part A 2017; 95: 173
  • 13 Cheney MA, Bhowmik PK, Moriuchi S, Birkner NR, Hodge VF, Elkouz SE. Colloids Surf., A 2007; 307: 62
    • 14a Jinasan A, Poonsawat T, Chaicharoenwimolkul L, Pornsuwana S, Somsook E. RSC Adv. 2015; 5: 31324
    • 14b Kumpan N, Poonsawat T, Chaicharoenwimolkul L, Pornsuwana S, Somsook E. RSC Adv. 2017; 7: 5759
    • 14c Chumkaeo P, Poonsawat T, Meechai T, Somsook E. Appl. Organomet. Chem. 2019; 33: e4675
    • 14d Poonsawat T, Techalertmanee T, Chumkaeo P, Yunita I, Meechai T, Namkajorn M, Pornsuwan S, Somsook E. Catalysts 2019; 9: 948
    • 15a Šťastný M, Issa G, Popelková D, Ederer J, Kormunda M, Kříženecká S, Henych J. Catal. Sci. Technol. 2021; 11: 1766
    • 15b Chang J.-K, Tsai W.-T. J. Electrochem. Soc. 2003; 150: A1333
    • 16a Pon-On W, Meejoo S, Tang IM. Mater. Res. Bull. 2008; 43: 2137
    • 16b Smoukov SK, Telser J, Bernat BA, Rife CL, Armstrong RN, Hoffman BM. J. Am. Chem. Soc. 2002; 124: 2318
    • 17a Griesiute D, Sinusaite L, Kizalaite A, Antuzevics A, Mazeika K, Baltrunas D, Goto T, Sekino T, Kareiva A, Zarkov A. CrystEngComm 2021; 23: 4627
    • 17b Singh R, Srivastava M, Prasad NK, Awasthi S, Kumar Dhayalan A, Kannan S. New J. Chem. 2017; 41: 12879
    • 18a Ilton ES, Post JE, Heaney PJ, Ling FT, Kerisit SN. Appl. Surf. Sci. 2016; 366: 475
    • 18b Zhang H, Xu F, Xue J, Chen S, Wang J, Yang Y. Sci. Rep. 2020; 10: 6067
    • 19a Xu M, Kong L, Zhou W, Li H. J. Phys. Chem. C 2007; 111: 19141
    • 19b Fischer AE, Pettigrew KA, Rolison DR, Stroud RM, Long JW. Nano Lett. 2007; 7: 281
    • 20a Devaraj S, Munichandraiah N. J. Phys. Chem. C 2008; 112: 4406
    • 20b Li W, Xu H, Cui M, Zhao J, Liu F, Liu T. Ionics 2019; 25: 999