Synthesis 2022; 54(15): 3317-3327
DOI: 10.1055/a-1828-2170
short review

Recent Advances in the Total Synthesis of Cephalotane-Type Norditerpenoids from Cephalotaxus sinensis

Hongyi Zhao
a   State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agriculture Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. of China
,
Huanhuan Pan
a   State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agriculture Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. of China
,
Yi Yao
b   Guizhou Engineering Laboratory for Synthetic Drugs, School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, P. R. of China
,
Jian Huang
a   State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agriculture Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. of China
,
Yang Chen
a   State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agriculture Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. of China
› Author Affiliations
This project was supported by the Department of Education of Guizhou Province (Qian Jiao He KY Zi [2017]375), the Science and Technology Foundation of Guizhou Province ([2020]1Y108 and Qian Ke He platform talents [2018]5781-30), the PhD Foundation of Guizhou University (Gui Da Ren Ji He [2017]32), and the Plant Protection and Inspection Station of Guizhou Province project (K19-0201-007) for financial support.


Abstract

Cephalotaxus diterpenoids are well known for their unique structures and biological activities. Cephanolides, as new cephalotane-type norditerpenoids isolated from Cephalotaxus sinensis, have attracted considerable attention from the synthetic community. The present Short Review summarizes strategic approaches toward the total synthesis of cephanolides from 2018 to 2021.

1 Introduction

2 Synthetic Approaches toward Cephalotane-Type Norditerpenoids

2.1 First Total Synthesis of Cephanolides B and C by Zhao (2018)

2.2 Total Synthesis of Cephanolides A–D by Sarpong (2021)

2.3 Total Synthesis of Cephanolide B by Yang (2021)

2.4 Asymmetric Total Synthesis of Cephanolide A by Gao (2020)

2.5 Asymmetric Total Synthesis of Cephanolide B by Gao (2021)

2.6 Asymmetric Total Synthesis of Cephanolides A and B by Cai (2021)

3 Conclusion and Perspectives



Publication History

Received: 03 March 2022

Accepted after revision: 19 April 2022

Accepted Manuscript online:
19 April 2022

Article published online:
30 May 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT. Nat. Rev. Drug Discov. 2021; 20: 200
    • 1b Harvey AL. Drug Discovery Today 2008; 13: 894
    • 1c Newman DJ, Cragg GM. J. Nat. Prod. 2020; 83: 770
  • 2 Abdelkafi H, Nay B. Nat. Prod. Rep. 2012; 29: 845
  • 3 Hao DC, Hou XD, Gu XJ, Xiao PG, Ge G.-B. Chin. J. Nat. Med. 2021; 19: 321
    • 4a Mikolajczak KL, Smith CR, Weisleder D. J. Med. Chem. 1977; 20: 328
    • 4b Perard-Viret J, Quteishat L, Alsalim R, Royer J, Dumas F. The Alkaloids: Chemistry and Biology, Vol. 78. Knölker HJ. Academic Press; Cambridge: 2017: 205
  • 5 Xu J, Fan Y, Gan L, Zhou Y, Li J, Yue J. Chem. Eur. J. 2016; 22: 14648
  • 6 Paudler WW, Kerley GI, McKay J. J. Org. Chem. 1963; 28: 2194
  • 7 Kantarjian HM, O’Brien S, Cortes J. Clin. Lymphoma, Myeloma Leuk. 2013; 13: 530
  • 8 Jeon H. Asian J. Org. Chem. 2021; 10: 3052
    • 9a Auerbach J, Weinreb SM. J. Am. Chem. Soc. 1972; 94: 7172
    • 9b Weinreb SM, Auerbach J. J. Am. Chem. Soc. 1975; 97: 2503
    • 10a Semmelhack MF, Chong BP, Jones LD. J. Am. Chem. Soc. 1972; 94: 8629
    • 10b Semmelhack MF, Chong BP, Stauffer RD, Rogerson TD, Chong A, Jones LD. J. Am. Chem. Soc. 1975; 97: 2507
  • 11 Chen Y, Li W. Youji Huaxue 2017; 37: 1885
  • 12 Chang Y, Meng FC, Wang R, Wang CM, Lue XY, Zhang QW. Stud. Nat. Prod. Chem. 2017; 53: 339
  • 13 Buta JG, Flippen JL, Lusby WR. J. Org. Chem. 1978; 43: 1002
  • 14 Kang SQ, Cai SY, Teng L. Acta Pharm. Sinica 1981; 16: 867
    • 15a Li YW, Huang L. Chin. Chem. Lett. 2002; 13: 937
    • 15b Li YW, Zhu LY, Huang L. Chin. Chem. Lett. 2004; 15: 397
    • 15c Yu XM, Chen SZ, Huang L. Chin. Chem. Lett. 2000; 11: 295
    • 15d Yu XM, Zhang LY, Chen SZ, Huang L. Chin. Chem. Lett. 1999; 10: 657
    • 15e Zhang LY, Chen SZ, Wei D, Huang L, Chai JJ, He CH. Chin. Chem. Lett. 1996; 7: 892
    • 15f Zhang LY, Yang WQ, Chen SZ, Huang L. Chin. Chem. Lett. 1997; 8: 15
  • 16 Hegde V, Campitelli M, Quinn RJ, Camp D. Org. Biomol. Chem. 2011; 9: 4570
  • 17 Li W. Asian J. Chem. 2012; 24: 1411
    • 18a Abdelkafi H, Evanno L, Deville A, Dubost L, Chiaroni A, Nay B. Eur. J. Org. Chem. 2011; 2789
    • 18b Abdelkafi H, Evanno L, Herson P, Nay B. Tetrahedron Lett. 2011; 52: 3447
    • 18c Abdelkafi H, Herson P, Nay B. Org. Lett. 2012; 14: 1270
    • 18d Evanno L, Deville A, Dubost L, Chiaroni A, Bodo B, Nay B. Tetrahedron Lett. 2007; 48: 2893
    • 19a Frey B, Mander LN, Hockless DC. R. J. Chem. Soc., Perkin Trans. 1 1998; 1555
    • 19b Frey B, Wells AP, Roden F, Au TD, Hockless DC, Willis AC, Mander LN. Aust. J. Chem. 2000; 53: 819
    • 19c Frey B, Wells AP, Rogers DH, Mander LN. J. Am. Chem. Soc. 1998; 120: 1914
    • 19d Mander L, O’Sullivan T. Synlett 2003; 1367
    • 19e O’Sullivan TP, Zhang H, Mander LN. Org. Biomol. Chem. 2007; 5: 2627
    • 19f Rogers DH, Frey B, Roden FS, Russkamp F.-W, Willis AC, Mander LN. Aust. J. Chem. 1999; 52: 1093
    • 19g Rogers DH, Morris JC, Roden FS, Frey B, King GR, Russkamp F.-W, Bell RA, Mander LN. Pure Appl. Chem. 1996; 68: 515
    • 19h Zhang H, Appels DC, Hockless DC. R, Mander LN. Tetrahedron Lett. 1998; 39: 6577
  • 20 Zhang M, Liu N, Tang W. J. Am. Chem. Soc. 2013; 135: 12434
  • 21 Zhang H.-J, Hu L, Ma Z, Li R, Zhang Z, Tao C, Cheng B, Li Y, Wang H, Zhai H. Angew. Chem. Int. Ed. 2016; 55: 11638
  • 22 Shao H, Zhao Y.-M. Total Synthesis of (±)-Cephanolides B and C Enabled by Palladium-Catalyzed Cascade Cyclization and Late-Stage sp3 C–H Bond Oxidation. In Strategies and Tactics in Organic Synthesis, Vol. 14. Harmata M. Academic Press; London: 2019: 159
  • 23 Jiang C, Xue J, Yuan Y, Li Y, Zhao C, Jing Q, Zhang X, Yang M, Han T, Bai J, Li Z, Li D, Hua H. Phytochemistry 2021; 192: 112939
  • 24 Fan YY, Xu JB, Liu H.-C, Gan LS, Ding J, Yue JM. J. Nat. Prod. 2017; 80: 3159
  • 25 Ge Z, Fan Y, Deng W, Zheng C, Li T, Yue J. Angew. Chem. Int. Ed. 2021; 60: 9374
    • 26a Ni L, Zhong XH, Chen XJ, Zhang BJ, Bao MF, Cai XH. Phytochemistry 2018; 151: 50
    • 26b Ni L, Zhong X, Cai J, Bao M, Zhang B, Wu J, Cai X. Nat. Prod. Bioprospect. 2016; 6: 149
  • 27 Xu L, Wang C, Gao Z, Zhao YM. J. Am. Chem. Soc. 2018; 140: 5653
  • 28 Haider M, Sennari G, Eggert A, Sarpong R. J. Am. Chem. Soc. 2021; 143: 2710
  • 29 Ren Z, Sun Z, Li Y, Fan X, Dai M, Wang Y, Hu X. Angew. Chem. Int. Ed. 2021; 60: 18572
  • 30 Li A, He Z, Liu B, Yang Z, Zhang Z. Org. Lett. 2021; 23: 9237
    • 31a Zhang H, He H, Gao S. Angew. Chem. Int. Ed. 2020; 59: 20417
    • 31b Zhang H, He H, Gao S. Org. Chem. Front. 2021; 8: 555
  • 32 Lu Y, Xu M.-M, Zhang Z.-M, Zhang J, Cai Q. Angew. Chem. Int. Ed. 2021; 60: 26610
  • 33 Barnych B, Vatèle J.-M. Synlett 2011; 1912
  • 34 de Armas P, Carrau R, Concepción JI, Francisco CG, Hernández R, Suárez E. Tetrahedron Lett. 1985; 26: 2493
  • 35 Johnson KF, Schneider EA, Schumacher BP, Ellern A, Scanlon JD, Stanley LM. Chem. Eur. J. 2016; 22: 15619
  • 36 Crabtree RH, Davis MW. J. Org. Chem. 1986; 51: 2655