Various assistive techniques have emerged to improve the treatment outcomes of endoscopic submucosal dissection (ESD) for gastric neoplasms [1–5]. We report a novel use of assistive intralesional traction, combined with snaring, for gastric ESD (▶ Fig. 1a).

ESD was used to resect a 10-mm gastric neoplasm located at the antrum (▶ Video 1). We used a multi-functional snare, a 20-mm snare with a distal tip (▶ Fig. 1b) capable of facilitating all ESD procedures including marking dot placement, mucosal incision, submucosal dissection, and snaring. After the circumferential mucosal incision, we placed the first clip, with a silicone band at the base, at the proximal margin of the lesion (▶ Fig. 2a); we subsequently placed the second clip at the distal margin of the lesion while hooking the silicone band (▶ Fig. 2b). The lesion was elevated by the intralesional traction force, enabling us to safely dissect the submucosa with ease under a favorable view of the submucosal layer (▶ Fig. 2c). As the submucosal dissection progressed, the lesion gradually recurred, but the intralesional traction force also decreased gradually. The decreased force indicated the need to switch from traction-assisted dissection to the efficient snaring technique (▶ Fig. 2d). Our traction-snare technique yielded a complication-free en-bloc resection.

Intralesional traction force proved effective for submucosal dissection in the early phase of the procedure. Once the lesion was recurred, with only a small area attached to the submucosa, snaring became an effective option for resection. The combination of these two techniques streamlined both phases of the submucosal dissection. Furthermore, the two clips used to apply intralesional traction did not interfere with the subsequent snaring procedure. Our novel application of intralesional traction and snaring techniques present a possible means of significantly reducing the difficulty and risk involved in the ESD procedure.

Endoscopy_UCTN_Code_TTT_1AO_2AG

Competing interests

Eikichi Ihara participated in the funded research of Takeda Pharmaceutical Co., Ltd. and belongs to the endowed course supported by the companies mentioned, including Ono Pharmaceutical Co., Ltd., Miyarisan Pharmaceutical Co. Ltd., Sanwa Kagaku Kenkyusho Co., Ltd., Otsuka Pharmaceutical Factory, Inc., Fujifilm Medical Co., Ltd., Terumo E-Videos

Corporation, Fancl Corporation, and Ohga Pharmacy. Eikichi Ihara received a lecture fee from Takeda Pharmaceutical Co. The others have no conflicts of interest or financial ties to disclose.

The authors

Yoshihisa Shoguchi1, Mitsuru Esaki1,2✉, Yosuke Minoda1, Xiaopeng Bai1, Haruei Ogino1, Eikichi Ihara1,3, Yoshihiro Ogawa1

1 Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan

Endoscopy | © 2022. The Author(s). Article published online: 2022-06-03
Corresponding author

Mitsuru Esaki, MD
Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Fukuoka, Japan
Fax: +81-92-642-5286
esaki_saiseikai@yahoo.co.jp

References


Bibliography

Endoscopy
DOI 10.1055/a-1841-5907
ISSN 0013-726X
published online 2022
© 2022. The Author(s).
This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial license, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany