Synthesis 2022; 54(19): 4167-4183
DOI: 10.1055/a-1843-1954
short review

Recent Developments in Transannular Reactions

Efraim Reyes
,
,
,
Uxue Uria
,
This work was supported by the Spanish Agencia Estatal de Investigación (FEDER-PID2020-118422-GB-I00) and the Basque Government (Grupos IT908-16).


Dedicated to Prof. Dr. Joan Bosch on the occasion of his 75th birthday

Abstract

Transannular reactions have shown a remarkable performance for the construction of polycyclic scaffolds from medium- or large-sized cyclic molecules in an unconventional manner. Recent examples of transannular reactions reported from 2011 have been reviewed, emphasizing the excellent performance of this approach when accessing the target compounds. This review also highlights how this methodology provides an alternative approach to other commonly used strategies for the construction of cyclic entities such as cyclization or cycloaddition reactions.

1 Introduction

2 Transannular Cycloadditions and Electrocyclizations

3 Transannular Conjugate Additions

4 Transannular 1,2-Addition to Ketones, Imines, Esters, and Amides

5 Transannular Reactions via Electrophilic Activation of Olefins

6 Transannular Ring-Opening of Epoxides

7 Transannular Alkylations of Enolates and Related Species

8 Miscellaneous Transannular Reactions

9 Concluding Remarks



Publication History

Received: 28 March 2022

Accepted after revision: 04 May 2022

Accepted Manuscript online:
04 May 2022

Article published online:
21 July 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Haufe G, Muehlstaedt M. Z. Chem. 1979; 19: 170
    • 1b Handa S, Pattenden G. Contemp. Org. Synth. 1997; 4: 196
    • 1c Marsault E, Toro A, Nowak P, Deslongchamps P. Tetrahedron 2001; 57: 4243
    • 1d Montana AM, Batalla C, Barcia JA. Curr. Org. Chem. 2009; 13: 919
    • 1e Rizzo A, Harutyunyan SR. Org. Biomol. Chem. 2014; 12: 6570
    • 2a Appavoo SD, Huh S, Diaz DB, Yudin AK. Chem. Rev. 2019; 119: 9724
    • 2b Gleiter R, Haberhauer G. Eur. J. Org. Chem. 2018; 2406
    • 2c Rademacher P. Chem. Soc. Rev. 1995; 24: 143
    • 3a Reyes E, Uria U, Carrillo L, Vicario JL. Tetrahedron 2014; 70: 9461
    • 3b Clarke PA, Reeder AT, Winn J. Synthesis 2009; 691
    • 3c Adio AM. Tetrahedron 2009; 65: 1533
    • 3d See also: ref 1c
  • 4 Deslongchamps P. Pure Appl. Chem. 1992; 64: 1831
  • 5 Iafe RG, Kuo JL, Hochstatter DG, Saga T, Turner JW, Merlic CA. Org. Lett. 2013; 15: 582
    • 6a He CQ, Chen TQ, Patel A, Karabiyikoglu S, Merlic CA, Houk KN. J. Org. Chem. 2015; 80: 11039
    • 6b Karabiyikoglu S, Merlic CA. Org. Lett. 2015; 17: 4086
    • 6c Prathyusha V, Priyakumar UD. RSC Adv. 2013; 3: 15892
  • 7 Nicolaou KC, Shah AA, Korman H, Khan T, Shi L, Worawalai W, Theodorakis EA. Angew. Chem. Int. Ed. 2015; 54: 9203
  • 8 Maiga-Wandiam B, Corbu A, Massiot G, Sautel F, Yu P, Lin BW.-Y, Houk KN, Cossy J. J. Org. Chem. 2018; 83: 5975
  • 9 Breunig M, Yuan P, Gaich T. Angew. Chem. Int. Ed. 2020; 59: 5521
    • 10a Li Y, Palframan MJ, Pattenden G, Winne JM. Tetrahedron 2014; 70: 7229
    • 10b See also: Vasamsetty L, Khan FA, Mehta G. Tetrahedron Lett. 2014; 55: 7068
  • 11 Kim HJ, Ruszczycky MW, Choi S, Liu Y, Liu H. Nature 2011; 473: 109
  • 12 Mergott DJ, Frank SA, Roush WR. Proc. Natl. Acad. Sci. U. S. A. 2004; 101: 11955
  • 13 Patel A, Chen Z, Yang Z, Gutiérrez O, Liu H, Houk KN, Singleton DA. J. Am. Chem. Soc. 2016; 138: 3631
    • 14a Yu P, Patel A, Houk KN. J. Am. Chem. Soc. 2015; 137: 13518
    • 14b Zhang C, Wang X, Chen Y, He Z, Yu P, Liang Y. J. Org. Chem. 2020; 85: 9440
  • 15 Campbell EL, Skepper CK, Sankar K, Duncan KK, Boger DL. Org. Lett. 2013; 15: 5306
    • 16a Chan D, Chen Y, Low K.-H, Chiu P. Chem. Eur. J. 2018; 24: 2375

    • For a computational study on an Au(I)-catalyzed reaction from allene/furane substrates reported, see:
    • 16b Ma R, Gung BW. Tetrahedron 2020; 76: 130840
  • 17 Zhurakovskyi O, Ellis SR, Thompson AL, Robertson J. Org. Lett. 2017; 19: 2174
  • 18 Sendra J, Reyes E, Prieto L, Fernández E, Vicario JL. Org. Lett. 2021; 23: 8738

    • Pioneering report:
    • 19a Balskus EP, Jacobsen EN. Science 2007; 317: 1736
    • 19b See also: Jaschinski T, Hiersemann M. Org. Lett. 2012; 14: 4114
    • 19c Chandler CL, List B. J. Am. Chem. Soc. 2008; 130: 6737
  • 20 Takao K, Kai H, Yamada A, Fukushima Y, Komatsu D, Ogura A, Yoshida K. Angew. Chem. Int. Ed. 2019; 58: 9851
    • 21a Fukazawa A, Ohshima H, Shiota Y, Takahashi S, Yoshizawa K, Yamaguchi S. J. Am. Chem. Soc. 2013; 135: 1731
    • 21b Fukazawa A, Ohshima H, Shimizu S, Kobayashi N, Yoshizawa K, Yamaguchi S. J. Am. Chem. Soc. 2014; 136: 8738
    • 22a Ohshima H, Fukazawa A, Sasamori T, Yamaguchi S. Angew. Chem. Int. Ed. 2015; 54: 7636

    • For other examples of reductive transannular coupling reactions, see:
    • 22b Nakai A, Kim J, Tanaka T, Kim D, Osuka A. Angew. Chem. Int. Ed. 2021; 60: 26540
    • 22c Eisch JJ, Yu K, Rheingold AL. Eur. J. Org. Chem. 2014; 818
  • 23 Nobusue S, Yamane H, Miyoshi H, Tobe Y. Org. Lett. 2014; 16: 1940
    • 24a Li Y, Pattenden G. Tetrahedron 2011; 67: 10045

    • Similar transannular Michael reactions with macrocyclic unsaturated γ-lactones as internal acceptors have been proposed to happen in the biosynthesis of cembranoid diterpenes:
    • 24b Meng Z, Fürstner A. J. Am. Chem. Soc. 2019; 141: 805
  • 25 Han J, Li F, Li C. J. Am. Chem. Soc. 2014; 136: 13610
    • 26a Roosen PC, Vanderwal CD. Org. Lett. 2014; 16: 4368
    • 26b Ramella V, Roosen PC, Vanderwal CD. Org. Lett. 2020; 22: 2883
  • 27 Thornton PD, Cameron TS, Burnell DJ. Org. Biomol. Chem. 2011; 9: 3447
  • 28 Martínez-García L, Prado G, Gómez KV, Paleo MR, Sardina FJ. J. Org. Chem. 2021; 86: 13684
  • 29 Fujii T, Nakada M. Tetrahedron Lett. 2014; 55: 1597
  • 31 Nguyen QN. N, Yang J, Tantillo DJ. J. Org. Chem. 2014; 79: 7162
  • 32 Umihara H, Yoshino T, Shimokawa J, Kitamura M, Fukuyama T. Angew. Chem. Int. Ed. 2016; 55: 6915
    • 33a Zhu C, Liu Z, Chen G, Zhang K, Ding H. Angew. Chem. Int. Ed. 2015; 54: 879
    • 33b Yu K, Gao B, Liu Z, Ding H. Chem. Commun. 2016; 52: 4485
  • 34 Raps FC, Fäseke VC, Häussinger D, Sparr C. Angew. Chem. Int. Ed. 2020; 59: 18390
  • 35 Mato R, Reyes E, Carrillo L, Uria U, Prieto L, Manzano R, Vicario JL. Chem. Commun. 2020; 56: 13149
  • 36 Sendra J, Manzano R, Reyes E, Vicario JL, Fernández E. Angew. Chem. Int. Ed. 2020; 59: 2100
  • 37 Mato R, Manzano R, Reyes E, Carrillo L, Uria U, Vicario JL. J. Am. Chem. Soc. 2019; 141: 9495
  • 38 Lee AS, Liau BB, Shair MD. J. Am. Chem. Soc. 2014; 136: 13442
    • 39a Samame RA, Owens CM, Rychnovsky SD. Chem. Sci. 2016; 7: 188
    • 39b Burtea A, DeForest J, Li X, Rychnovsky SD. Angew. Chem. Int. Ed. 2019; 58: 16193
    • 39c Zhang J, Ya Y, Hu R, Li T, Bai W.-J, Yang Y. Angew. Chem. Int. Ed. 2020; 59: 2860
    • 39d Ju X, Beaudry CM. Angew. Chem. Int. Ed. 2019; 58: 6752
    • 40a Leitner C, Gaich T. Chem. Commun. 2017; 53: 7451

    • See also:
    • 40b Yoshida K, Okada K, Ueda H, Tokuyama H. Angew. Chem. Int. Ed. 2020; 59: 23089
    • 40c Delayre B, Piemontesi C, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2020; 59: 13990
  • 41 Antropow AH, García NR, White KL, Movassaghi M. Org. Lett. 2018; 20: 3647
  • 42 Zeng X, Boger DL. J. Am. Chem. Soc. 2021; 143: 12412
    • 43a Mewald M, Medley JW, Movassaghi M. Angew. Chem. Int. Ed. 2014; 53: 11634
    • 43b White KL, Movassaghi M. J. Am. Chem. Soc. 2016; 138: 11383
    • 43c Kang T, White KL, Mann TJ, Hoveyda AH, Movassaghi M. Angew. Chem. Int. Ed. 2017; 56: 13857
  • 44 McMurray L, Beck EM, Gaunt MJ. Angew. Chem. Int. Ed. 2012; 51: 9288
  • 45 Ohtawa M, Krambis MJ, Cerne R, Schkeryantz JM, Witkin JM, Shenvi RA. J. Am. Chem. Soc. 2017; 139: 9637
  • 46 Minassi A, Pollastro F, Chianese G, Caprioglio D, Taglialatela-Scafati O, Appendino G. Angew. Chem. Int. Ed. 2017; 56: 7935
  • 47 Tian C, Lei X, Wang Y, Dong Z, Liu G, Tang Y. Angew. Chem. Int. Ed. 2016; 55: 6992
    • 48a Rajapaksa NS, Jacobsen EN. Org. Lett. 2013; 15: 4238

    • For a related achiral version, see:
    • 48b Riehl PS, Nasrallah DJ, Schindler CS. Chem. Sci. 2019; 10: 10267
  • 49 Koshimizu M, Nagatomo M, Inoue M. Tetrahedron 2018; 74: 3384
    • 50a Clarke PA, Winn J. Tetrahedron Lett. 2011; 52: 1469

    • For another example in which a transannular Prins-like reaction is invoked as part of a complex cascade reaction, see:
    • 50b Zhang J, Wang X, Xu T. Nat. Commun. 2021; 12: 3022
    • 51a Cao F, Gao W, Wang X, Zhang Z, Yin G, Wang Y, Li Z, Shi T, Hou Y, Chen J, Wang Z. Org. Lett. 2021; 23: 6222
    • 51b Shi T, Cao F, Chen J, Wang X, Yin G, Wang H, Wang Z. Org. Chem. Front. 2022; 9: 771
  • 52 Williams DR, Mondal PK, Bawel SA, Nag PP. Org. Lett. 2014; 16: 1956
    • 53a Dagoneau D, Xu Z, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2016; 55: 760

    • For other recent examples of transannular aminal formation in total synthesis, see:
    • 53b Pfaffenbach M, Gaich T. Chem. Eur. J. 2015; 21: 6355
    • 53c Yang Y, Bai Y, Sun S, Dai M. Org. Lett. 2014; 16: 6216
    • 53d Yan Q, Carroll PJ, Gau MR, Winkler JD, Joullié MM. Org. Lett. 2019; 21: 6619
    • 53e Li H, Wang X, Lei X. Angew. Chem. Int. Ed. 2012; 51: 491
    • 54a Piemontesi C, Wang Q, Zhu J. J. Am. Chem. Soc. 2016; 138: 11148
    • 54b See also: Huang J.-Z, Jie X.-K, Wei K, Zhang H, Wang M.-C, Yang Y.-R. Synlett 2013; 24: 1303
    • 55a Cakmak M, Mayer P, Trauner D. Nat. Chem. 2011; 3: 543

    • For another example, see:
    • 55b Brock EA, Davies SG, Lee JA, Roberts PM, Thompson JE. Org. Lett. 2011; 13: 1594
  • 56 Atmuri ND. P, Lubel WD. J. Org. Chem. 2020; 85: 1340
  • 57 Bohland F, Erlin I, Platte L, Schröder M, Schollmeyer D, Nubbemeyer U. Eur. J. Org. Chem. 2014; 6272
  • 58 Royzen M, Taylor MT, DeAngelis A, Fox JM. Chem. Sci. 2011; 2: 2162
  • 59 Iqbal M, Black RJ. G, Winn J, Reeder AT, Blake AJ, Clarke PA. Org. Biomol. Chem. 2011; 9: 5062
    • 60a Lekky A, Ruengsatra T, Ruchiwarat S, Ploypradith P. J. Org. Chem. 2019; 84: 5277

    • For other example involving a different approach for the generation of the carbocation is intermediate, see:
    • 60b Tomooka K, Suzuki M, Shimada M, Ni R, Uehara K. Org. Lett. 2011; 13: 4926
  • 61 Ohshima H, Fukazawa A, Yamaguchi S. Angew. Chem. Int. Ed. 2017; 56: 3270
    • 62a Hibi D, Kitabayashi K, Shimizu A, Umeda R, Tobe Y. Org. Biomol. Chem. 2013; 11: 8256
    • 62b See also: Takeda T, Inukai K, Tahara K, Tobe Y. J. Org. Chem. 2011; 76: 9116
  • 63 Kreuzahler M, Fabig S, Haberhauer G, Gleiter R. J. Org. Chem. 2017; 82: 13572
  • 64 Ushakov DB, Navickas V, Ströbele M, Maichle-Mössmer C, Sasse F, Maier ME. Org. Lett. 2011; 13: 2090
  • 65 Biji M, Radhakrishnan KV, Lankalapalli RS. Org. Lett. 2021; 23: 5871
  • 66 Rong Z.-Q, Yang L.-C, Liu S, Yu Z, Wang Y.-N, Tan ZY, Huang R.-Z, Lan Y, Zhao Y. J. Am. Chem. Soc. 2017; 139: 15304
  • 67 Liu J, Zhou Y, Yu Z.-X. Org. Lett. 2022; 24: 1444
    • 68a Liu X, Liu J, Wu J, Huang G, Liang R, Chung LW, Li C.-C. J. Am. Chem. Soc. 2019; 141: 2872
    • 68b Liu X, Liu J, Li C.-C. J. Org. Chem. 2021; 86: 11125
  • 69 Riaño I, Uria U, Reyes E, Carrillo L, Vicario JL. J. Org. Chem. 2018; 83: 4180
    • 70a Lajiness JP, Boger DL. J. Org. Chem. 2011; 76: 583
    • 70b Uematsu M, Boger DL. J. Org. Chem. 2014; 79: 9699
    • 70c See also: Imaizumi T, Yamashita Y, Nakazawa Y, Okano K, Sakata J, Tokuyama H. Org. Lett. 2019; 21: 6185
  • 71 Craig D, Funai K, Gore SJ, Kang A, Mayweg AV. W. Org. Biomol. Chem. 2011; 9: 8000
  • 72 Lee KR, Ahn S, Lee S. Org. Lett. 2021; 23: 3735
  • 73 Barnes TH, Johnson KF, Gorden JD, Merner BL. Chem. Commun. 2020; 56: 8747
  • 74 Karabiyikoglu S, Boon BA, Merlic CA. J. Org. Chem. 2017; 82: 7732