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Abstract Background Emergency department (ED)-based injury surveillance systems across
many countries face resourcing challenges related to manual validation and coding of
data.
Objective This study describes the evaluation of a machine learning (ML)-based
decision support tool (DST) to assist injury surveillance departments in the validation,
coding, and use of their data, comparing outcomes in coding time, and accuracy pre-
and postimplementations.
Methods Manually coded injury surveillance data have been used to develop, train,
and iteratively refine a ML-based classifier to enable semiautomated coding of injury
narrative data. This paper describes a trial implementation of the ML-based DST in the
Queensland Injury Surveillance Unit (QISU) workflow using a major pediatric hospital’s
ED data comparing outcomes in coding time and pre- and postimplementation
accuracies.
Results The study found a 10% reduction in manual coding time after the DST was
introduced. The Kappa statistics analysis in both DST-assisted and -unassisted data
shows increase in accuracy across three data fields, that is, injury intent (85.4%
unassisted vs. 94.5% assisted), external cause (88.8% unassisted vs. 91.8% assisted),
and injury factor (89.3% unassisted vs. 92.9% assisted). The classifier was also used to
produce a timely report monitoring injury patterns during the novel coronavirus
disease 2019 (COVID-19) pandemic. Hence, it has the potential for near real-time
surveillance of emerging hazards to inform public health responses.
Conclusion The integration of the DST into the injury surveillance workflow shows
benefits as it facilitates timely reporting and acts as a DST in themanual coding process.
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Background and Significance

Emergency department (ED)-based injury surveillance sys-
tems are used across many countries to capture and monitor
injury patterns and trends in the community, thoughmost of
these systems face resourcing challenges related to the
validation, coding, and utilization of injury data. Previous
papers have extensively described the ED-based injury data
collection processes and challenges, as well as the iterative
development of a machine learning (ML)-based injury clas-
sifier.1–6 This study instead focuses on the applications of the
ML-based injury classifier as a decision support tool (DST) to
assist the injury coding workforce in validating, coding, and
using these data in practice.

Context
The Queensland Injury Surveillance Unit (QISU) collects ED-
based injury surveillance data from several participating
hospitals across Queensland. QISU data are collected by triage
nurses during the initial examination using an injury module
triggered when the presentation is flagged as an injury via a
Yes/No field. However, the injury data extracted by QISU are
often incomplete due to the module being noncompulsory,
leaving only the presenting problem narrative as a source of
injury details. The missing fields are then completed by QISU
coders based on the narrative data using an in-house valida-
tion and coding system called Injury Coding System (ICS). In
addition to completing missing fields, the QISU coders also
reviewand validate the injury codes assigned by triage nurses.
Each record is validated and coded following theNational Data
Standards–Injury Surveillance (NDS-IS)7 in the ICS.

QISU is moving toward broadening its injury selection
criteria to include all ED cases with injury diagnoses (includ-
ing cases not flagged affirmatively as injuries by triage
nurses). While this will improve QISU data representative-
ness, using broader criteria will also increase the volume of
data that needs validating and coding by QISU coders. With
the current 1.9 full-time equivalent coding workforce, the
turnaround time of coding is expected to be delayed and the
provision of timely injury reporting is unfeasible.

Machine Learning–Based Injury Classifier Overview
The ML-Based Injury Classifier (referred to as “the classifier”
herein) was developed in Microsoft Access (as it provides a
good visual interface to the data along with database func-
tionalities) for coding External Cause of Injury, Major Injury
Factor (MIF), Mechanism of Injury, and Intent of injury based
on the narrative of the injury and other fields. The develop-
ment and refinement of the classifier used in this study have
been described in previous publications.2–4

The classifier predicts these codes based on two ML
models, that is (1) Logistic Regression (LR) and (2) Naive
Bayes (NB),8 which were trained on a large amount of
manually coded QISU data from past years (2002 onward),
as illustrated in ►Fig. 1.

The NB model can be described as: for a given narrative
consisting of a vector of j words, n¼ {n1, n2, …, nj}, i possible
set of codes (e.g., E-code/MIF) can be assigned represented
by a second vector E¼ {E1, E2, …,Ei}. Using conditional
independence assumption, the probability of assigning a
particular E-code can be calculated as:

where, P(Ei|n)¼probability of code category Ei given the
set of n words in the narrative.

P(nj|Ei)¼probability of word nj given category Ei.
P(Ei)¼probability of category i.
P(nj)¼probability of word nj in the entire word list.
P(nj|Ei), P(Ei), and P(nj) are estimated based on their
frequency in a training set. P(nj|Ei) is usually smoothed
to reduce the effects of noise by adding a small constant α
to the number of times a particular word occurred in a
category, as shown below:

where, count (nj|Ei)¼number of times word nj occurs in
category Ei, count (nj)¼number of times word nj occurs,

Fig. 1 Schematic diagram of the machine learning-based injury classifier. LR, Logistic Regression; NB, Naive Bayes.
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count (Ei)¼number of times category Ei occurs, and N¼
number of training categories.

In the LR model, for a feature vector of words represented
by x, prediction represented as y, injury code category
represented by k, the total number of categories being K,
and uk representing the weight vector associated with each
category, the probability of a category k being true given x is
calculated as:

The optimal weight vectors are calculated iteratively by
maximizing the log-likelihood function on the training data:

where n¼number of training cases.
These ML models were selected because they output the

predicted injury code along with the associated probability
scores as shown above, which provides the users with a
useful assessment of the model’s confidence in a decision
support scenario. The classifier offers various options to
users, such as providing predictions based on one of the
two ML models (LR or NB) or combining the prediction
outputs of the two models. In the case any individual model
is selected, the prediction output of only that model is
considered. If the combinedmode of the classifier is selected,
then the average of prediction probabilities outputted by the
LR and NB models is calculated for each category, and the
top-1 or top-3 category with the highest average prediction
probability is presented as output to the user.

Related Work
Artificial intelligence (AI)/ML-based health care decision
support systems (DSS) have been found helpful for various
purposes, such as effectively managing everyday operations
in the hospital and providing valuable insights from the
electronic health records and literature to health care pro-
fessionals.9–15 For example, clinical DSS paired with com-
puterized physician order entry have been found to (1)
substantially reduce medication errors,10 (2) help medical
professionals in retrieving highly relevant medical literature
to help in formulating diagnoses and applicable treat-
ments,14 and (3) assist clinicians in classifying anatomical
location of catheter location by reading radiology reports.13

Studies have also been conducted to explore the benefit of
ML tools in detecting the onset of sepsis in hospitalized
patients15 and detecting patients with a higher risk of
readmissions.12 Health care DSS can also help hospitals
and public health agencies to analyze and monitor trends
of health care quality indicators,9 and predict intensive care
unit (ICU) admission and in-hospital death of trauma
patients11 for better prioritization and utilization of resour-
ces. Outside the health care system, DSS has also been found
useful to automatically classify injury data, particularly
occupational injury data.16–19

While AI/ML-based DSS offers several benefits, their
adoption in health care organizations is sometimes slow

due to technology adoption challenges. A previous study
recommended that for successful adoption and effectiveness
of a DSS in hospitals, it is important to have topmanagement
support, active involvement of clinical departments, and
robust hospital-wide information infrastructure to collect
and process good quality data frommultiple sources, among
other factors.9 For successful adoption of the AI/ML-based
clinical DSS by staff members, gaining their trust in the
system is especially important. Explanation of the recom-
mendations made by clinical DSS with proper reasoning is
one of the critical factors for developing trust in the DSS by
health care professionalswhouse the system.20BayesianDSS
have been found to be effective in various injury surveillance,
health care, and other applications, including (1) learning of
motor vehicle accident categories,21 (2) coding of occupa-
tional injury cases,18 (3) automatic indexing of documents,22

(4) providing interactive decision support related to print
quality to customers,23 and (5) classification and identifica-
tion of customer complaints.24 Similar to the NB model, the
LR model also outputs the likelihood of correctness of
prediction, and thus, both thesemodelswere used to develop
the classifier for QISU.

Methods

Machine Learning–Based Decision Support Tool
Implementation
The QISU workflow follows a sequence of data processing
tasks as described in ►Fig. 2. The injury data from collecting
EDs is extractedmonthly from aweb portal (as text files) and
imported into the ICS. The ICS consists of a database that can
be interrogated with an interactive form that allows QISU
coders to manually validate and code the injury cases one
record at a time. After the coding and validation process, the
cleaned dataset is exported into the QISU central database.
From this database, data can be easily accessed, queried, and
analyzed for reporting purposes.

The classifier is being integrated into the QISU’s existing
workflow in three stages (►Fig. 2). Stage 1 involves setting up
a ML-based DST (referred to herein as “the DST”) to assist
QISU coding workforce in their validation and coding prac-
tices. Stage 2 involves the development of a separate data
storage for machine-classified data to allow the machine-
classified raw injury data to be analyzed and used for more
timely injury reporting. Stage 3 includes regular benchmark-
ing of themachine classifier data against the validated data to
refine the machine classifier performance iteratively. This
paper will focus on evaluating the impact of the ML-based
DST trial implementation in stage 1.

The development of the DST in stage 1 involves processing
the raw injury data into the classifier prior to the ICS data
importation. It is to be noted that no other natural language
preprocessing technique, such as stemming, lemmatization,
or stop word removal, was applied to maintain the original
format and content of the raw data. The classifier automati-
cally reads the delimited text files extracted from the ED
information system and assigns predicted codes for four
injury variables: external cause, intent, mechanism of injury,
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and major injury factor. The classifier was designed only to
assign predicted codes where the triage nurses have not
completed injury fields. This was done to avoid changes in
the existing structure and format of the raw data files. The
machine-classified data with predicted codes produced by

the classifier is then saved in the same delimited text file
format. This will allow the machine classified data to be
imported into the QISU cleaning system following the exist-
ing workflow for manual validation and coding. The DST
consists of predicted codes from the classifier acting as

Fig. 2 QISU data workflow. EDIS, Emergency Department Information System; ICS, Injury Coding System; QISU, Queensland Injury Surveillance Unit.
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decision support prompts to QISU coders providing sug-
gested coding for the four injury variables.

Impact Measures
To study the impact of the DST on the coding workforce, a
trial implementation was conducted using data from QISU’s
pediatric hospital collected in March 2020. Data from the
month prior (February 2020)was used as a control dataset to
compare the outcome pre- and post-DST implementation.
The trial dataset was processed through the classifier as
described in stage 1 to produce machine-classified data on
the four variables as follows: (1) external cause, (2) MIF, (3)
mechanism of injury, and (4) intent of injury. The predicted
codes were then imported into the ICS as decision support
prompts that were then validated by the QISU coders. The
validation and coding process remain the same pre- and
postimplementation of the DST.

The impact on data accuracy was measured by comparing
the number of accurate codes in both February (control) and
March (trial) datasets. Two expert coders were assigned to
code both datasets independently to generate the gold-
standard (GS) codes. The expert coders were blinded to the
QISU coders’ coding; however, they were not blinded to the
machine classifier coding. Disagreements between both
expert coders were resolved by discussion to reach an
agreement. The codes assigned by QISU coders in both
datasets were compared with the agreed GS codes. Discor-
dant cases were regarded as inaccurate coding, and concor-
dant cases were regarded as accurate coding. Concordances
between the QISU Coders (QC) and Machine Classifier (MC)
were also examined.

The impact on coding efficiency was measured based on
the comparison of median coding time in both February
(control) and March (trial) datasets. Each time, a record is
saved in ICS during the manual coding and validation pro-
cess, the system automatically assigns a timestamp. These
data were used to calculate coding time by sorting the
timestamp in chronological order and calculating each
record’s coding time based on the time difference between
records’ timestamps. The first records of the day and records
after breaks were treated as outliers, and therefore excluded
from coding time analysis.

Statistical Analysis
Data management was performed in Microsoft Access, and
all statistical analyses were performed using IBM SPSS,
version 23. Coding concordance data were analyzed using
Chi-square tests. Cohen’s Kappa statistics and sensitivity
were calculated to test the agreement of the injury coding
between the GS and QISU coding. Due to the data’s ordinal
and positively skewed nature, coding time was analyzed
using a nonparametric Mann–Whitney U-test and repre-
sented using median and interquartile range (IQR).

Results

In total, 3,174 records in February (n¼1,668) and March
(n¼1,506) were extracted from the ICS. March data were

preprocessed through the batch classifier, generating the
predicted codes that were used in the DST. February data
were included as a control dataset in this study to measure
the changes in coding efficiency and data accuracy after
implementing the DST in QISU’s workflow.

The classifier was designed to read ED data files and only
to code records that triage nurses have not coded. In total, the
classifier assigned intent codes in 599 injury records, exter-
nal cause codes in 820 records, and MIF codes in 1,476
records. As specified in the background, the ED data often
have empty fields in the injury module as triage nurses are
allowed to skip part of or all the injury fields. In the pediatric
hospital data used for this study, external cause (46%) and
intent of injury (60%) fields appeared to have much higher
completion rates comparedwith themajor injury factor field
(2%).

Impact on Data Accuracy
The implementation of the DST is expected to improve data
accuracy, as it prompts QISU coders to crosscheck code
assignments. The findings from the Kappa analysis, compar-
ing the GS and QISU coders coding in both control and trial
datasets, show increases in coding accuracy across all three
data fields: injury intent (85.4% unassisted vs. 94.5% assisted),
external cause (88.8% unassisted vs. 91.8% assisted), andmajor
injury factor (89.3% unassisted vs. 92.9% assisted) as shown
in ►Table 1. Although the percentages of accurate coding of
injury intent appear to be similar in both control and trial
datasets, thekappavalue is 5.6%higher in the trial dataset than
in the control dataset.

The Intent of Injury Coding Accuracy
Overall, 610 records with machine-classified intent of injury
codes were included in the analysis. The intent of injury field
includes 11 categories separating unintentional injuries from
intentional self-harm and assault injuries. However, the
majority of the records are unintentional injuries leaving
very small numbers of records in other categories. Therefore,
due to the small numbers in the intentional categories in this
study, intent categories were grouped into two broad cate-
gories, such as (1) unintentional injuries, and (2) intentional
injuries.7

The majority of the records coded by QISU coders (603
records, 98.8%) were validated by the GS. Out of all these, 590
records were from the concordant group between QISU
coders and the classifier, meaning that 13 records were
accurately corrected during the manual coding process.
The classifier accurately coded one out of seven records
that were inaccurately coded by QISU coders. Of all the
machine classified intent codes, 591 (96.7%) were in concor-
dance with the GS.

When comparing the 610machine-classified recordswith
the control dataset, there was almost no difference in the
proportion of GS concordance between the two datasets.
However, Kappa statistics shows a higher agreement (þ5.6%)
between the GS and manual coding in the trial dataset
(►Table 2). This suggests that the classifier increases the
accuracy of the intent-of-injury coding.
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Looking at the specific categories in the intent of injury
field (ungrouped), in both trial and control datasets, con-
cordance between the GS and QISU coders are almost equal
(above 99%) in unintentional injuries coding with the trial
dataset showed slightly higher (þ0.3%) concordance than
the control dataset. In contrast to the unintentional and
self-harm injuries, both datasets showed lower GS concor-
dance in assault categories (trial, 77.8% and control, 80%)
and other and unspecified intent (trial, 56% and control,
68%) coding. This may be explained by the nature of the
data used in the study being from a pediatric hospital.
Pediatric injury cases in these two categories are often
ambiguous at the point of patient triage, and the documen-

tation regarding intent can be interpreted differently by
human coders.25

External Cause Coding Accuracy
A total of 820 records withmachine-classified external cause
codes were included in the analysis. The external cause field
includes 30 categories which are grouped into 14 broad
categories.7 Approximately 93% of the external cause coded
byQISU coders (762 records) were validated by the GS. Out of
all 762 records, 686 records (90%) were from the concordant
group between QISU coders and the classifier, and the
remaining 76 records were accurately corrected during the
manual coding process. The classifier accurately coded 7 out

Table 1 Coding accuracy unassisted and assisted by the DST

Data fields Control data (unassisted by the DST)
n (%)/Sensitivity (95% CI)

Trial data (assisted by the DST)a

n (%)/Sensitivity (95% CI)

Intent of injury (grouped) n¼ 1,668 n¼ 610

Accurate coding 1,653 (99.1) 605 (99.2)

Inaccurate coding 20 (1.2) 7 (0.8)

UAvg sensitivity 0.941 (0.94–0.95) 0.960 (0.95–0.96)

Kappa value 0.889 (0.83–0.94) 0.945 (0.90–0.99)

p-Value <0.001 <0.001

External cause n¼ 1,668 n¼ 820

Accurate coding 1516 (90.9) 762 (92.9)

Inaccurate coding 152 (9.1) 58 (7.1)

UAvg sensitivity 0.939 (0.898–0.980) 0.942 (0.89–0.99)

Kappa value 0.888 (0.87–0.9) 0.918 (0.90–0.94)

p-Value <0.001 <0.001

Major injury factor n¼ 1,668 n¼ 1,476

Accurate coding 1,502 (90) 1,378 (93.4)

Inaccurate coding 166 (10) 98 (6.6)

UAvg sensitivity 0.886 (0.850–0.923) 0.939 (0.909–0.971)

Kappa value 0.893 (0.88–0.91) 0.929 (0.91–0.94)

p-Value <0.001 <0.001

Abbreviations: CI, confidence interval; DST, decision support tool; UAvg, unweighted average
aNumber of records from the trial dataset included in the analysis varies depending on the number of records classified by the classifier.

Table 2 Intent of injury coding concordance

Intent of injury categories (grouped) Number of concordant cases (% of total)

GS and QC (control)
n¼1,668
n (%)

GS and QC (trial)
n¼ 610
n (%)

GS and MC (trial)
n¼610
n (%)

QC and MC (trial)
n¼610
n (%)

Unintentional 1,590 (99.5) 558 (99.8) 558 (99.8) 557 (99.6)

Intentional self-harm 28 (100) 33 (100) 26 (78.8) 26 (78.8)

Assault 12 (80) 7 (77.8) 6 (66. 7) 6 (66. 7)

Other or unspecified intent 18 (66. 7) 5 (55. 6) 1 (11.1) 4 (44.4)

Overall 1,648 (98.8) 603 (98.8) 591 (96.9) 593 (97.2)

Abbreviations: GS, gold standard coding; MC, machine classifier coding; QC, Queensland Injury Surveillance Unit coders coding.
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of 58 records that were inaccurately coded byQISU coders. Of
all the machine classified external cause codes, 693 (84.5%)
were in concordance with the GS.

When comparing the percentage of GS concordance be-
tween the 820 machine-classified records and the control
dataset (►Table 3), there was an increase of 2% in external
cause coding accuracy from 90.9% (control) to 92.9% (trial).
An even higher level of accuracy is shown by Kappa statistics
(88.8% unassisted vs. 91.8% assisted).

Within the specific external cause categories, GS concor-
dance is equal at 100% in both trial and control datasets in the
fire, flames, smoke, exposure to hot subject, and poisoning
categories. The GS concordance is higher in the trial dataset
than in the control dataset in all the frequent categories, such
as transport (þ4.8%), fall (þ6.1%), struck by or collision with
object (þ0.7%), and the other, and unspecified cause (þ3.1%).
Conversely, the concordance in the trial dataset is lower than
the control dataset in the rare categories such as threat to
breathing (�38.5%), cutting, piercing object (�3.5%), and
machinery (�29.7%). In categories like animal-related and
electricity, where the characteristic of the injury is relatively
prominent, the trial dataset has higher accuracy than the
control dataset.

Major Injury Factor Coding Accuracy
A total of 1,476 records withmachine-classifiedmajor injury
factor codes were included in the analysis (►Table 4). The
major injury factorfield includes 138 object categorieswhich
are grouped into 13 broad categories.7 Approximately 93% of
theMIF coded by QISU coders (1,378 records) were validated
by theGS. Out of all 1,378 records, 87.7% (1,209 records)were
already coded accurately by the classifier, and 169 records
were corrected during the manual coding process. Within

the 98 MIF records that were inaccurately coded by QISU
coders, 30 records were accurately coded by the classifier. Of
all the machine classified injury factor codes, 1,239 (83.9%)
were consistent with the GS.

When the GS concordance in both trial and control data-
sets were compared, there was an increase of 3.4% in MIF
coding accuracy from 90% (control) to 93.4% (trial). Similar to
injury intent and external cause coding, Kappa statistics
shows an even higher level of accuracy in the trial dataset
(89.3% unassisted vs. 92.9% assisted)

Within the specific major injury factor categories, the GS
concordance range between 71% (miscellaneous) and 99%
(food, drink, and personal use item). The GS concordance is
higher in the trial dataset than in the control dataset in
almost all the broad categories including infant or child’s
product (þ5.6%); furnishing (þ0.4%); appliance (þ8.1%);
utensil; container or rubbish (þ11%); sporting equipment
(þ3.3%); natural object or animal (þ3.9%); food, drink, and
personal item (þ9.5%); chemical substance (þ8.3); and other
material (þ4.7%). On the other hand, the concordance in the
trial dataset is lower than the control dataset in several
categories such as transport (�2.5%), tool (�7.6%), structure,
or fitting (�2.2%), and miscellaneous (�6.8%).

Impact on Coding Efficiency
The impact on coding efficiency was measured based on the
time difference between records’ timestamps. The median
coding time in February and March data was compared with
examine the DST impact on coding time. In total, 2,960
records were included in the coding time analysis, and 214
records were excluded as outliers.

Overall, approximately 72% of all the records were coded
under 1minute, 22% within 3minutes, and only 6% within

Table 3 External cause coding concordance

External cause categories (grouped) Number of concordant cases (% of total)

GS and QC (control)
n¼ 1668
n (%)

GS and QC (trial)
n¼820
n (%)

GS and MC (trial)
n¼820
n (%)

QC and MC (trial)
n¼820
n (%)

Transport 79 (95.2) 37 (100) 33 (89.2) 32 (86.5)

Fall: high or low 625 (93.0) 213 (99.1) 204 (94.8) 203 (94.4)

Threat to breathing 11 (100) 8 (61.5) 7 (53.8) 11 (84.6)

Fire, flames, smoke 1 (100) 2 (100) (0) (0)

Exposure to hot object 29 (100) 9 (100) 9 (100) 9 (100)

Poisoning 40 (100) 29 (100) 27 (93.1) 27 (93.1)

Cutting, piercing object 1 (100) 28 (96.5) 24 (82.8) 29 (100)

Animal related 41 (89.1) 23 (95.8) 20 (83.3) 21 (87.5)

Machinery 35 (89.7) 3 (60) 2 (40) 2 (40)

Electricity 3 (50) 2 (100) 1 (50) 1 (50)

Struck by/collision with object 355 (91.0) 211 (91.7) 187 (81.3) 203 (88.3)

Other/unspecified cause 294 (84.5) 197 (87.6) 170 (75.6) 194 (86.2)

Overall 1516 (90.9) 762 (92.9) 684 (83.4) 732 (89.3)

Abbreviations: GS, gold standard coding; MC, machine classifier coding; QC, Queensland Injury Surveillance Unit coders coding.
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7minutes. The median coding time for all records is 39
(IQR¼26–65 seconds; ►Table 5). The most quickly coded
injury records (coded within a few seconds) usually contain
the shortest injury narratives with little information about
the injury circumstances. Consequently, these records are
often assigned to unspecified categories. In contrast, injury
records that took the longest to code (a fewminutes)were (1)
rare injury cases or (2) cases with conflicting information.
These injury cases often require further investigation and
discussionwith other coding staff tomake decisions in codes
assignment.

Coding times in both trial and control data were analyzed
to establishwhether the DST improved coding efficiency. The
Mann–Whitney U-test shows a statistically significant dif-
ference in coding time between the two datasets with a 10%
reduction in manual coding time after the DST was intro-
duced. The median coding time in March (DST assisted) was
37 seconds (IQR¼25–63) compared with 41 seconds (IQR
¼27–68) in February (without DST; U¼1017058, z¼�3.32,

p<0.001, r¼0.061). Although a 4-second reduction in me-
dian seems insignificant, cumulatively, it adds up to a
considerable increase in the number of records coded. For
example, if a coder spends 5 hours coding on a daily basis,
completing 400 records unassisted, the coder can complete
approximately 80more records dailywith DST. This amounts
to an increase of ca. Overall, 1,800 records from one coder on
a monthly average.

In addition to the three DST-assisted data fields, other
injury fields, such as activity when injured, location of the
injury, nature of injury, and body region injured, are also
validated and coded by QISU coders during the manual
coding process. Although theDSThelped speed up the overall
coding process, manual coding of these other injury fields is
still unassisted.

The length of time spent on coding each injury field may
vary depending on the complexity and the number of
categories to select from. For example, the injury intent field
has 11 categories which is more straightforward and quicker

Table 5 Coding time per record assisted and unassisted by the DSTa

Coding time per record Control data (unassisted by the DST)
n (%)

Trial data (assisted by the DST)
n (%)

Total
n (%)

<1minute 1,071 (70.1) 1,055 (73.6) 2,126 (71.8)

1–3minutes 359 (23.5) 301 (21) 660 (22.3)

3–7minutes 97 (6.4) 77 (5.4) 174 (5.9)

Total 1,527 (100) 1,433 (100) 2,960 (100)

Median (IQR) 41 (27–68) 37 (25–63) 39 (26–65)

Abbreviations: DST, decision support tool; IQR, interquartile range.
aMann–Whitney U-test¼ 1,017,058, z¼�3.32, p< 0.001, r¼ 0.061.

Table 4 Major injury factor coding concordance

Major injury factor
categories (grouped)

Number of concordant cases (% of total)

GS and QC (control)
n¼ 1,668
n (%)

GS and QC (trial)
n¼ 1,476
n (%)

GS and MC (trial)
n¼1,476
n (%)

QC and MC (trial)
n¼1,476
n (%)

Infants or child’s product 108 (91.5) 99 (97.1) 90 (88.2) 92 (90.2)

Furnishing 43 (89.6) 45 (90) 32 (64) 33 (66)

Appliance 176 (89.3) 149 (97.4) 130 (85.0) 131 (85.6)

Utensil, container or rubbish 59 (83.1) 48 (94.1) 35 (68.6) 35 (68.6)

Transport (including mobile machinery) 396 (92.7) 322 (90.2) 325 (91.0) 323 (90.5)

Sporting equipment 165 (94.8) 152 (98.1) 138 (89.0) 139 (89.7)

Tool 10 (90.9) 15 (83.3) 13 (72.2) 14 (77.8)

Natural object or animal 26 (92.9) 30 (96.8) 24 (77.4) 24 (77.4)

Food, drink, personal use item 106 (89.8) 138 (99.3) 134 (96.4) 134 (96.4)

Chemical substance 121 (89.0) 107 (97.3) 95 (86.4) 94 (85.4)

Structure or fitting 8 (88.9) 13 (86.7) 6 (40) 7 (46.7)

Material 190 (90.5) 199 (95.2) 161 (77.0) 165 (78.9)

Miscellaneous 94 (77.7) 61 (70.9) 56 (65.1) 59 (68.6)

Overall 1,502 (90) 1,378 (93.4) 1,239 (83.9) 1,250 (84.7)

Abbreviations: GS, gold standard coding; MC, machine classifier coding; QC, Queensland Injury Surveillance Unit coders coding.
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to code than the major injury factor field which has 138
categories. Unfortunately, the ICS does not record the length
of time spent on coding individual injury fields. Therefore,
analysis to compare coding time in each injury field is not
feasible. Another factor thatmay influence coding time is the
commonness of the injury case. The QISU coders often
memorize frequent codes and are therefore quicker to code
than rare codes.

Discussion

Implication for Injury Surveillance
ED-based injury surveillance systems are in use worldwide
for monitoring and responding to injury patterns and trends
in the community, yet almost universally, systems, such as
these are challenged by resourcing constraints and compet-
ing demands for health care budgets. Furthermore, produc-
ing timely contemporary data to monitor emerging trends is
challenged in systems relying on manual coding of such
voluminous data, such as the common ED presentation of
injury as a cause. This paper described the evaluation of an
ML-based classifier and DST which was developed using
Queensland’s ED-based injury surveillance data and imple-
mented into the workflow of an injury surveillance coding
department.

Previous studies suggest that it could be expected that
coders would still be adjusting to a new system and lack
familiaritywith and trust in the new tool.26–28 Evenwith this
expectation taken into account, in the first month of imple-
mentation, the DSTwas found to increase the efficiency and
accuracy of coding in the department. While results are
promising so far, further evaluation of the DST’s utility for
a larger sample of injury surveillance data, including adult
injury presentations, is required to quantify the impact in
terms of efficiency and accuracy gains.

One of the unexpected benefits of the classifier was that
during the implementation period, therewas an urgent need
for rapid accumulation and analysis of contemporary injury
data to support government enquiries regarding the impact
of the novel coronavirus disease 2019 (COVID-19) commu-
nity restrictions on injury frequency and severity. In the
routine injury surveillance system, responding to such
requests would not be possible due to the coding backlog
whereby data are 6 to 12 months’ old by the time they have
been coded and validated for use. In this context, overall,
approximately 150,000 ED records were coded by the classi-
fier in regard to intent and external cause in under an hour
(comparing 2019 with 2020 figures), a task that would have
taken a coder (averaging one record per minute or 400
records per day) almost a year of solid coding to complete.
The raw injury data coded by the classifier could be used to
produce a timely report for our government stakeholders.
This data proved invaluable to these government depart-
ments tasked with responding to safety concerns during this
time, providing themwith evidence to target their responses
to specific areas of concern, including certain transportation
devices (motorcycles and bicycles), intentional self-harm,
and assault. Hence, continued development and refinement

of ML-based classifiers, such as that described in this study,
have significant potential for almost real-time biosurveil-
lance of emerging hazards to enhance evidence for public
health responses.

Limitations
The study has some limitations. First, the data used for the
study was only collected for a short period (2 months).
Another evaluation of data accuracy and coding efficiency
should be conducted after a longer period of postimplemen-
tation. Data from previous years prior to DST implementa-
tion should also be used as a control dataset to allow
comparison and evaluation of longitudinal effects of the
DST. Another limitation of the study is that although the
results show some positive impacts of the DST implementa-
tion, other secular trends may have also contributed to these
outcomes. For example, possible learning bycoders over time
might influence their ability to code faster and more accu-
rately. A quasiexperimental, such as interrupted time series,
should be considered when evaluating a bigger dataset to
address the impacts of secular trends. Despite these limi-
tations, in the short term, the integration of the DST into the
injury surveillance workflow has shown benefits, as it facil-
itates timely reporting and acts as a DST in themanual coding
process.

Clinical Relevance Statement

Injury surveillance data provide valuable information on
injury patterns and trends in the community to injury
prevention workers, emergency and trauma clinicians, and
government agencies. Integrating the machine learning–
based classifier in the injury surveillance system’s workflow
will increase the completeness of injury data and expedite
injury coding for near real-time injury surveillance without
putting extra pressure on clinical staff to assign injury
coding.

Multiple Choice Questions

1. Which of the following groups was the decision support
tool designed for?
a. Patients
b. Triage nurses
c. Injury coders
d. Doctors

Correct Answer: The correct answer is option c. The
decision support tool was designed to assist injury coders
in assigning injury intent, external cause andmajor injury
factor codes.

2. What is the main injury data field used by the machine
classifier to predict injury codes?
a. Injury narrative
b. External cause
c. Major injury factor
d. Age
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Correct Answer: The correct answer is option a. The
machine classifier was designed to read injury narrative
and predict injury intent, external cause, andmajor injury
factor codes.

3. What external cause categories showed higher accuracy
when coders were assisted by the machine learning–
based decision support tool?
a. Frequent categories
b. Rare categories
c. Machinery categories
d. Object categories

Correct Answer: The correct answer is option a. Accuracy
of coding was higher in the trial dataset than in the control
dataset in all the frequent categories (i.e., transport, fall,
struck by or collision with object and the other, and
unspecified cause). On the other hand, the coding accura-
cy in the trial dataset was lower than the control dataset
in the rare categories such as threat-to-breathing, cutting,
piercing object, and machinery.

4. What injury intent category showed the highest accuracy
improvement when coders were assisted by the machine
learning–based decision support tool?
a. Self-harm
b. Unintentional
c. Assault
d. Unspecified

Correct Answer: The correct answer is option b. The
accuracy of unintentional injuries coding was already
high in the unassisted environment. However, the coding
accuracy increased slightly by 0.3% in the trial dataset.

Protection of Human and Animal Subjects
Human and/or animal subjects were not included in the
project. In addition, the study analyzed nonidentifiable
data; therefore, consent from patients was not required.
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