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ABSTR ACT

Obesity is an increasing health problem all over the world. In 
combination with the current COVID-19 pandemic, this has 
turned into a massive challenge as individuals with overweight 
and	obesity	at	all	ages	show	a	significant	increase	in	their	risk	
of getting severe COVID-19. Around 20 % of all patients that 
were	hospitalized	for	COVID-19	suffered	from	obesity	alone,	
whereas obesity in combination with other metabolic comor-
bidities, such as type 2 diabetes and hypertension, account for 
up to 60 % of all hospitalizations in relation to COVID-19. There-
fore, it is of immense importance to put the spotlight on the 
high incidence of obesity present already in childhood both by 
changing the individual minds and by encouraging politicians 
and the whole society to commence preventive interventions 
for achieving a better nutrition for all social classes all over the 
world.	In	the	current	review,	we	aim	to	explain	the	different	
pathways and mechanisms that are responsible for the in-
creased risk of severe COVID-19 in people with overweight and 
obesity. Furthermore, we discuss how the pandemic has led to 
weight gains in many people during lockdown. At the end, we 
discuss the importance of preventing such an interface be-
tween a non-communicable disease like obesity and a commu-
nicable disease like COVID-19 in the future.
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Introduction
Obesity increases the risk of severe COVID-19 by giving rise to a 
worse clinical outcome and increased mortality, when compared 
to the general population [1]. Obesity alone is responsible for 20 % 
of COVID-19 hospitalizations, whereas obesity in combination with 
type 2 diabetes and hypertension accounts for up to 60 % of all 
COVID-19 hospitalizations [2]. In addition, infected people with 
obesity (particularly those under 60 years of age) are more likely 
to require acute care, admission to the intensive care unit, intuba-
tion, and mechanical ventilation [3]. Even young patients are at 
higher	risk	for	a	nonfavorable	COVID-19	prognosis	if	they	suffer	
from metabolic dysfunctions [4, 5]. Children usually develop an 
asymptomatic to moderate infection causing few hospitalizations; 
but a recent meta-analysis indicates that even childhood obesity 
is likely to increase the risk of severe COVID-19 [6]. Albeit severe 
courses of COVID-19 in children are rare, a novel pediatric hyper-
inflammatory	condition	termed	pediatric	inflammatory	multisys-
tem syndrome, temporally associated with SARS-CoV-2 (PIMS-TS) 
or	multisystem	inflammatory	syndrome	(in	children)	(MIS(-C)),	
causes a severe to fatal disease. Even though underlying factors are 
unclear,	it	turns	out	that	childhood	obesity	is	a	significant	comor-
bidity [7]. This is a worldwide problem since, according to WHO re-
ports, around 40 % of the world population was estimated to be 
overweight or obese in 2016, and the numbers are still increasing, 
thus obesity has reached pandemic levels [8] (▶Table 1).

Emerging data suggest that several mechanisms are responsi-
ble for this increased susceptibility of people with obesity for se-
vere COVID-19 including, amongst others, an impaired immune 
system and changes in SARS-CoV-2 entry receptors in obese indi-
viduals [9–12]. In the current review, we discuss these mechanisms 
in order to understand why patients with obesity have a higher risk 
of developing severe COVID-19 symptoms not only in the acute 
phase of the disease but also in relation to long-COVID, vaccine 
breakthrough infections and re-infections. Furthermore, we dis-
cuss	the	effects	of	lockdown	on	obesity,	and	we	comment	on	pos-
sibilities for avoiding this interface between metabolic and infec-
tious diseases in potential future pandemics.

Adipose tissue
The adipose tissue is the largest endocrine organ in humans and, 
in addition to adipocytes, it consists of pre-adipocytes, endotheli-
al	cells,	fibroblasts,	leukocytes,	and	bone-marrow-derived	mac-
rophages	[13].	Adipose	tissue	is	classified	into	two	main	types,	
white adipose tissue and brown adipose tissue. White adipose tis-
sue is the more predominant form in the human body, where it 
plays a major role in energy storage. The main function of brown 
adipose tissue is thermogenesis [14–16]. It is becoming increas-
ingly clear that adipose depots serve distinct functions in males 
and	females	and	have	specific	physiological	roles.	However,	the	
mechanisms	that	regulate	the	size	and	function	of	specific	adipose	
tissues in men and women remain poorly understood [17].

In addition to energy storage via triacylglycerols stored in adi-
pocytes, adipose tissue secretes “adipocytokines” or “adipokines”, 
including, for example, adiponectin, leptin, resistin, and visfatin 
[13]. Other important factors produced include the cytokines 
tumor necrosis factor (TNF), interleukin-6 (IL-6), interleukin-1 (IL-1), 

CC-chemokine ligand 2 (CCL2), plasminogen activator inhibitor 
type I (PAI-I), and a number of complement factors [18, 19]. Most 
of	these	factors	are	known	as	pro-inflammatory	mediators	that	in-
duce	immune	cell	infiltration	(e.	g.,	macrophages)	and	play	a	major	
role in infectious diseases.

The major adipokines in adipose tissue are leptin and adiponec-
tin,	where	leptin	is	pro-inflammatory,	and	adiponectin	is	anti-in-
flammatory.	In	obesity,	leptin	is	increased	and	adiponectin	is	de-
creased compared to normal weight individuals [20]. Oppositely, 
circulating adiponectin concentrations increase during caloric re-
striction [21].

Leptin	is	almost	exclusively	expressed	in	differentiated	adipo-
cytes of the white adipose tissue with subcutaneous fat showing a 
higher expression than visceral adipose tissue [22, 23]. Leptin re-
leased from adipocytes acts on neurons to reduce appetite and to 
increase energy expenditure [20]. Leptin is closely linked to the im-
mune system where it stimulates the proliferation and activation 
of immune cells and cytokine production [20].

Disease-specific	subpopulations	of	adipose-resident	immune	
cells can be found in adipose tissue. These immune cells can be fur-
ther	separated	into	populations	specific	for	either	visceral	or	sub-
cutaneous adipose tissue [24]. An example of these immune cells 
are the macrophages, which are heterogenous and can generally 
be	defined	in	two	separate	polarization	states,	M1	and	M2	[25,	26].	
M1	macrophages	are	induced	by	pro-inflammatory	mediators,	such	
as	lipopolysaccharide	(LPS)	and	interferon-γ	(IFN-γ),	produce	
pro-inflammatory	cytokines	(TNF-α,	IL-6,	IL-12)	and	generate	re-
active oxygen species, such as nitric oxide (NO) via activation of 
iNOS (Nos2) [27]. M2 macrophages are induced, by among others, 
IL-4	and	IL-13,	and	they	produce	high	levels	of	the	anti-inflamma-
tory	cytokines	IL-10	and	IL-1rα.	Additionally,	iNOS	activity	is	
blocked [27]. Overall, M2 macrophages are believed to participate 
in	the	inhibition	of	inflammatory	responses	and	in	the	promotion	
of tissue repair and angiogenesis [25]. Both in mice and humans, 
it has been shown that distinct macrophage populations with 
unique	characteristics	direct	inflammatory	versus	physiological	
changes in adipose tissue [28].

Infection with SARS-CoV-2
Entry of SARS-CoV-2 into cells depends on binding of the viral spike 
glycoproteins to extracellular domains of cellular angiotensin-con-
verting enzyme 2 (ACE2). ACE2 exists in two forms, a mem-
brane-spanning cellular and an unbound soluble form [29]. Mem-
brane-bound ACE2 (mACE2) constitutes the majority of ACE2; it 
contains a transmembrane domain anchoring the cleavable N-ter-
minal domain. A membrane-bound protease (secretase) generates 
soluble ACE2 (sACE2) by enzymatic cleavage of mACE2. sACE2 ap-
pears in the circulation in very low concentrations. Both mACE2 and 
sACE2 are capable of binding the spike protein on the surface of 
SARS-CoV-2. After binding to mACE2, the spike proteins are pro-
teolytically activated by host cell proteases [29–31], resulting in 
fusion of the viral envelope with the plasma membrane or the en-
dosome membrane of the host and viral entry into the cell.

ACE2 is part of the renin-angiotensin-aldosterone system 
(RAAS), where it mainly controls the generation of the vasodilat-
ing angiotensin 1–7 from angiotensin II. ACE2 also cleaves angio-
tensin I to angiotensin 1–9, which can be further converted to 
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angiotensin 1–7 by ACE [29]. ACE2, Ang-(1–7), and its mitochon-
drial assembly (Mas) receptor constitute the vasoprotective arm of 
the	RAAS	leading	to	anti-inflammatory	and	anti-fibrotic	responses	
[29, 32–34].

Diet	and	obesity	have	been	shown	to	affect	the	expression	of	
ACE2 in adipose tissue [35]. Recently, it was demonstrated that a 
decrease in sACE2 during weight loss was associated with improve-
ments in metabolic health [36]. Another factor, neuropilin 1 (NRP-
1), known to facilitate SARS-CoV-2 cell entry is highly abundant in 
subcutaneous adipose tissue, and both NRP-1 and ACE2 levels are 
decreased after weight loss [37]. However, it is still not clear wheth-
er	a	high	or	a	low	expression	is	beneficial	in	relation	to	health	(re-
viewed in [32]). Similarly, it is debated whether high levels of ACE2 
in adipose tissue in relation to SARS-CoV-2 is an advantage or not. 
Thus, it seems that not only the abundance but also the function-
ality of the enzyme may be of importance.

Viruses including coronaviruses are primarily dependent on the 
host metabolism in several stages of their life cycle. For example, an 
association of dyslipidemia with the pathological development of 
COVID-19 was reported [38]. This raises the possibility that exploita-
tion of the host lipid metabolism, by using potential inhibitors, can 
exhibit	therapeutic	benefits	against	COVID-19	[39].	Additionally,	
specific	lipid	supplementation	can	represent	another	strategy	to	er-
ror-prone the formation of viral particles. Furthermore, switching 
the lipid metabolism through the implementation of ketogenic diet 
might	be	an	approach	to	limit	the	effects	of	viral	infection	[40].	An	
experimental study associated with computational analysis identi-
fied	the	potential	inhibitory	effect	of	flavonoids	against	SARS-CoV-2	
as they bind to essential viral targets required in virus entry and/or 
replication [41]. Flavonoids also showed excellent immunomodula-
tory	and	anti-inflammatory	activities	including	the	inhibition	of	var-
ious	inflammatory	cytokines.	Further,	flavonoids	showed	a	signifi-
cant ability to reduce the exacerbation of COVID-19 in the case of 
obesity via promoting lipid metabolism [41].

Mechanisms responsible for an increased risk of 
severe COVID-19 in obesity
Obesity, in particular visceral obesity, is a risk factor for the devel-
opment of metabolic syndrome, cardiovascular disease [42, 43], 

blood	hypercoagulability	[44],	and	vitamin	D	deficiency	[45],	which	
are furthermore all risk factors for COVID-19 severity [46].

A number of mechanisms are responsible for the increased risk 
of severe COVID-19 and mortality in people with adiposity [47–
49]. One explanation may be the physical stress on ventilation by 
obstructing diaphragm excursion. Furthermore, obesity is associ-
ated	with	an	increased	risk	of	pulmonary	fibrosis,	chronic	obstruc-
tive pulmonary disorder, and reduced respiratory function [50].

Another reason is an impairment of the immune system in peo-
ple with adiposity. Obesity is characterized by hyperplasia and hy-
pertrophy of adipocytes and accumulation of macrophages in the 
adipose tissue, resulting in the development of crown-like structures 
of necrotic adipocytes encircled by macrophages [42] (▶Fig. 1). In 
obesity,	a	switch	from	an	anti-inflammatory	M2	type	to	the	pro-in-
flammatory	M1	form	of	macrophages	is	observed	[14].	Adiponectin	
can	also	affect	macrophages	by	stimulating	the	production	of	an-
ti-inflammatory	cytokines	[51].	Similarly,	adiponectin-deficient	mice	
display	an	increased	expression	of	pro-inflammatory	M1	type	mark-
ers	and	decreased	anti-inflammatory	M2	type	markers	[52].	There-
by,	obesity	may	lead	to	a	baseline	state	of	chronic	inflammation.	In	
adipose	tissue	of	people	with	obesity	the	expression	of	pro-inflam-
matory	cytokines,	such	as	TNF-α,	IL-6	and	IL-1β,	is	upregulated.

In patients who died from COVID-19, a higher prevalence of 
CD68-positive macrophages in visceral adipose tissue was observed 
compared to control patients without COVID-19. As expected, these 
were accompanied by crown-like structures, signs of adipocyte stress 
and death [46].

Previously, obesity was shown to increase the duration of type 
A	influenza	virus	shedding	in	adults,	whereas	this	was	not	the	case	
for	type	B	influenza	[53].	Adipocytes	and	other	adipose	tissue-res-
ident cells, such as adipo-stromal cells, and macrophages have also 
been shown to be targets for adenovirus subtype 36, but not sub-
type 2 [54]. Therefore, it has been suggested that adipose tissue 
may act as a reservoir for the SARS-CoV-2 virus, whereby it would 
facilitate the spread of the virus and stimulate the immune re-
sponse [54]. Indeed, a recent study showed that SARS-CoV-2 RNA 
could be found in adipose tissue of both men and women that had 
died due to COVID-19. In male individuals who were obese with a 
body mass index (BMI)  > 30, SARS-CoV-2 could also be detected in 
the liver. In women, there was no correlation between BMI and viral 
load in the adipose tissue [55]. In another study, the presence of 
SARS-CoV-2	in	adipose	tissue	was	confirmed	in	more	than	60	%	of	
COVID-19 autopsy cases. In 25 out of the 29 COVID-19 cases in this 
study, comorbidities were present with 34 % patients being over-
weight or with obesity [56].

It was demonstrated that SARS-CoV-2 is able to infect mature 
differentiated	and	lipid-laden	adipocytes	but	not	preadipocytes	or	
immature	precursors	[55].	Whether	this	is	due	to	different	ACE2	
concentrations, or another mechanism is not known yet. An alter-
ation in carbon metabolism with increased circulating levels of glu-
cose and free fatty acids were observed in COVID-19 patients [57]. 
High levels of such free fatty acids may increase the levels of adi-
pokines,	myokines	and	cytokines,	which	further	promote	inflam-
matory processes. Furthermore, cytokines are able to damage the 
vascular endothelium and activate the RAAS, which may lead to in-
creased blood pressure, atherosclerosis, and thrombosis [58].

▶Table 1 Key facts about obesity [7].

 ▪ Worldwide obesity has nearly tripled from 1975–2016.
 ▪ In 2016, 39 % of adults aged 18 years and over (39 % of men and 40 % 
of women) were overweight.

 ▪ Overall, about 13 % of the world’s adult population (11 % of men and 
15 % of women) were obese in 2016.

 ▪ Over 340 million children and adolescents aged 5–19 were 
overweight or obese in 2016.

 ▪ The prevalence of overweight and obesity among children and 
adolescents aged 5–19 has risen dramatically from just 4 % in 1975 
to just over 18 % in 2016.

 ▪ 39 million children under the age of 5 were overweight or obese in 
2020.

 ▪ Overweight and obesity are linked to more deaths worldwide than 
underweight.
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This	chronic	inflammation	and	imbalance	between	pro-inflamma-
tory	and	anti-inflammatory	factors	in	obesity	is	a	risk	factor	for	addi-
tional pathogenic infections, such as SARS-CoV-2, which may lead to 
an abnormal immune response reaching pathogenic levels [1].

The	upregulation	of	TNF-α,	IL-6	and	IL-1β	in	people	with	obesi-
ty inhibits insulin signaling [59], and consecutively this cytokine 
upregulation leads to an increase in leptin and plasminogen acti-
vator inhibitor-1 and a reduced release of adiponectin [60]. An in-
verse correlation to glucose intolerance and type 2 diabetes has 
been observed [61]. Adiponectin modulates a number of metabol-
ic processes, including glucose regulation and fatty acid oxidation 
[62]. Low adiponectin blood levels thereby cause an inappropriate 
increase in the immune response in COVID-19.

Overall, these impairments of the immune system may contrib-
ute	to	a	chronic	state	of	low-grade	inflammation	in	the	ectopic	vis-
ceral adipose tissue in people with obesity (▶Fig. 1). In combina-
tion with an infection like SARS-CoV-2, this may lead to an overre-
action of the immune system, a so-called hyperinflammation 
resulting in a cytokine storm that can lead to paracrine injuries in 
other organs with progression to acute respiratory syndrome [63].

Post-COVID and long-term consequences in relation 
to obesity
During the COVID-19 pandemic, social isolation and (semi)-lock-
down were imposed upon populations in the interest of infection 
control. All over the world, obesity increased during the pandemic 
due to dramatic changes in the daily routines, such as a reduction in 
physical activity and negative changes in the eating habits [64]. In 
the US, the COVID-19 pandemic promoted weight gains in adults 
with those already being obese being more susceptible [65]. How-
ever, in particular children with obesity have been shown to be at a 
higher risk of negative lifestyle changes and weight gain during lock-

down [66]. As such, several studies have shown that not just adults 
gain weight, but that also obesity in adolescents and children has in-
creased due to COVID-19 lockdowns [67]. For example, in China, a 
study performed on 12 889 Chinese college students aged 17–27 
years showed that their weight significantly increased during a 
4-month lockdown in early 2020. This weight gain was associated 
with increased sedentary time and an increase in COVID-19-related 
stress and depression [68]. Another study from South Korea showed 
that in 226 children between 4 and 14 years old, school closure was 
significantly	associated	with	an	increased	BMI	[69].

Different	studies	have	shown	that	an	unhealthy,	high-fat	diet	
might increase the susceptibility to various infectious diseases [70]. 
For example, experimental animals on a high-fat diet had exhibit-
ed a two-fold increase in mortality, an enhancement in respiratory 
lesions and an increased production of cytokines when infected 
with	H1N1	influenza	[71].	The	individual	nutrition	pattern	is	also	
known to be able to change the gut microbiota, which might cause 
metabolic	changes	that	might	affect	the	susceptibility	for	getting	
infected with SARS-COV-2 in a positive or negative direction [70].

Numerous factors contribute to childhood and adolescent obe-
sity, including amongst others gender, biology, geographical and 
socio-economical aspects [72–74]. Non-communicable diseases, 
such as overweight and obesity are largely preventable. At the in-
dividual level, people can choose to limit energy intake by eating 
healthier food consisting of, for example, fruit, vegetables and 
whole grains. Furthermore, regular physical activity spread 
throughout the week is important. However, for individuals to fol-
low these recommendations, supportive environments and com-
munities are fundamental in shaping people’s mind, by making the 
choice of healthier foods and regular physical activity the easiest 
choice. This means that the healthiest alternative should be acces-
sible,	available	and	affordable	[8].

▶Fig. 1	 Chronic	inflammation	in	adipose	tissue	of	obese	individuals:	There	are	several	reasons	why	obesity	can	lead	to	a	severe	course	of	COV-
ID-19.	One	possible	cause	is	the	chronic	inflammatory	reaction	in	the	adipose	tissue.	In	adipose	tissue	with	hypertrophic	adipocytes,	there	is	a	mass	
production	of	pro-inflammatory	cytokines,	such	as	IL-6,	IL-1β,	and	TNF-α.	In	addition,	more	and	more	immune	cells	invade	the	adipose	tissue.	These	
cells	produce	inflammatory	substances	themselves.	Being	overweight	thereby	leads	to	a	low-grade	chronic	inflammation.	If	an	infection	with	SARS-
CoV-2	then	occurs,	there	is	a	high	risk	of	an	overreaction	of	the	immune	system	leading	to	hyperinflammation	and	cytokine	storm.	This	represents	a	
potentially life-threatening derailment of the immune system, which can further lead to paracrine injuries.
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Evidence from the SARS-CoV-1 outbreak in 2002–2003 suggests 
that there is a likelihood of long-term metabolic sequelae from 
COVID-19. In survivors of SARS-CoV-1, long-term metabolic ab-
normalities including dyslipidemia and cardiovascular disease as 
well as signs of abnormal glucose metabolism with insulin resist-
ance and hyperglycemia, and diabetes have been observed for up 
to 12 years [75, 76]. More and more studies are emerging showing 
similar tendencies after infections with SARS-CoV-2, where up to 
40	%	of	people	that	were	infected	with	SARS-CoV-2	suffer	from	
symptoms	of	long-COVID	[77–79],	such	as	difficulties	in	concen-
tration, cognitive dysfunction, amnesia, depression, fatigue, and 
anxiety [80–82]. Therefore, people post discharge following 
COVID-19 will need close monitoring for risk factor control [83].

To avoid severe COVID-19, vaccination was proven to be highly 
effective	[84].	However,	currently	a	high	number	of	SARS-CoV-2	
vaccine breakthrough infections and reinfections occur when peo-
ple are exposed to the Omicron SARS-CoV-2 variants. The relation-
ship	between	obesity	and	vaccine	efficacy	remains	unclear,	but	as	
T-cell responses in obese individuals are impaired, it might imply 
that	COVID-19	vaccines	are	less	effective	in	obese	individuals	[85].	
This	was	supported	in	latest	findings	indicating	that	obesity	and	
other metabolic dysfunctions might promote vaccine break-
through SARS-CoV-2 infections [84, 86, 87]. Furthermore, for re-
infections, it was recently shown that at least one of the comorbid-
ities obesity, diabetes, asthma, heart disease, lung disease, and high 
blood pressure was present in 50 % of all cases [88].

Conclusion
The number of people with overweight and obesity is increasing 
all over the world making these people more susceptible to infec-
tious diseases, such as COVID-19, which in the current corona pan-
demic turned out to be devastating. Therefore, the importance of 
preventing obesity already from childhood on has been further put 
into the spotlight [89]. The COVID-19 pandemic has taught us that 
nutrition education interventions, access to healthy food, as well 
as family nutrition counselling should be covered by pediatric ser-
vices to prevent obesity, which worsens disease outcomes related 
to SARS-CoV-2 infection and to potential other new epidemics in 
the future [66]. Individually-targeted evidence-based health pro-
motion, weight management, behavioral change and psycho-so-
cial support services need vigorous support from physicians and 
other health personnel [90].
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