Use of a nylon loop and transparent cap to assist in the endoscopic removal of a long and bent metal foreign body incarcerated in the duodenum

There are many endoscope-assisted techniques that have been reported for the removal of traditional foreign bodies in the digestive tract (e.g., rat-tooth grasper, mini-snare, and end loop, among others) [1–3]. However, for any long and bent metal foreign bodies incarcerated in the duodenum or stomach, the technical difficulty is how to make the angled and sharp ends pass through the physiological narrow areas (e.g., pyloric canal, cardia, and esophageal entrance) in a relatively safe way.

A 45-year-old man presented to our hospital with abdominal pain for 6 hours, having swallowed a metal wire 12 hours previously. Computed tomography (CT) scanning showed a long and bent metal foreign body (approximately 20 cm) incarcerated in the duodenum (▶ Fig. 1). Gastroscopy examination (GIF-Q260J; Olympus) revealed that the two ends of the bent wire were incarcerated in the duodenal bulb and descending duodenum, with the anal side of the metal foreign body being located in the horizontal section of the duodenum (▶ Fig. 2). It would be impossible for foreign body forceps to safely remove the bent wire and pull it out of the pyloric canal because of its angled and sharp ends. An attempt was therefore made to tie the two ends of the bent wire and slowly fold it into a straight line with a nylon rope (HX-400U-30; Olympus), before dragging it from the duodenum into the stomach. However, the angle between the nylon rope’s hard outer tube and the metal foreign body made it too difficult to get it through the cardia. We therefore released the tightened nylon loop (▶ Fig. 3), clamped the ends of the wire with the foreign body forceps, and pulled it into a long transparent cap (OlympusMH-463), allowing the metal foreign body finally to be removed through the cardia and the entrance of the esophagus (▶ Fig. 4 and ▶ Fig. 5; ▶ Video 1). We have provided a new safe and effective method for removing long and bent metal foreign bodies.

Funding

National Natural Science Foundation of China
http://dx.doi.org/10.13039/501100001809
82170628

Guizhou Provincial Department of Science and Technology Excellent Youth Project [2021]5647

Competing interests

The authors declare that they have no conflict of interest.
The authors

Hua Zhang*, Haibo Wang*, Yi Fan, Weili Hua, Biguang Tuo, Rui Xie

Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China

Corresponding author

Rui Xie, MD, PhD

Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China

xr19841029@aliyun.com

References

Bibliography

Endoscopy

DOI 10.1055/a-1881-3538

ISSN 0013-726X

published online 2022

© 2022. The Author(s).

This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG, Rüdigerstraße 14, 70469 Stuttgart, Germany

* Joint first authors
Video 1 A long and bent metal foreign body incarcerated in the duodenum is removed endoscopically using a nylon loop and transparent cap.