Synlett 2023; 34(06): 657-662
DOI: 10.1055/a-1892-4608
cluster
Chemical Synthesis and Catalysis in India

Cl···H–N Interaction Assisted Addition of Sulfonamides to Enol Ethers: Synthesis of 2-Deoxy and 2,6-Dideoxy Sulfonamido Glycosides

Ananya Mukherji
,
Pavan K. Kancharla
P.K.K. is thankful to the Science and Engineering Research Board (SERB, DST, New Delhi) for financial assistance through CRG/2019/000918. A.M. thanks the Indian Institute of Technology Guwahati (IITG) for the fellowship.


Abstract

The strained/frustrated electrostatic interactions between the ion pair of TTBPy+X increases the reactivity in both the ions, resulting in the activation of a third molecule like sulfonamides (aromatic/­aliphatic) via hydrogen bonding. This intriguing weak-interactions-based reactivity has been utilized to develop an organocatalytic synthesis of 2-deoxy-sulfonamido-glycosides from glycals. The sulfonamidoglycosylation of glycals using a catalytic amount of 2,4,6-tri-tert-butylpyridinium salts proceeded stereoselectively to provide N-glycosides in good to high yields. This process was demonstrated with l-rhamnal and d-galactal. Besides, IR spectroscopic studies explain that the hindered protonated pyridine cannot behave as a cationic Brønsted acid as is generally perceived.

Supporting Information



Publication History

Received: 28 May 2022

Accepted after revision: 05 July 2022

Accepted Manuscript online:
05 July 2022

Article published online:
04 August 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

  • 1 Dimroth K, Mach W. Angew. Chem., Int. Ed. Engl. 1968; 7: 460
    • 2a Brown HC, Kanner B. J. Am. Chem. Soc. 1966; 88: 986
    • 2b Deutsch E, Cheung NK. V. J. Org. Chem. 1973; 38: 1123
  • 3 Effenberger F, Eberhard JK, Maier AH. J. Am. Chem. Soc. 1996; 118: 12572
  • 4 Xu XH, Liu GK, Azuma A, Tokunaga E, Shibata N. Org. Lett. 2011; 13: 4854
    • 5a Jiang C, Blacque O, Fox T, Berke H. Organometallics 2011; 30: 2117
    • 5b Clark ER, Ingleson MJ. Organometallics 2013; 32: 6712
  • 6 Boebel TA, Gin DY. Angew. Chem. Int. Ed. 2003; 42: 5874
  • 7 Geng Y, Zhang LH, Ye XS. Chem. Commun. 2008; 597
  • 8 Mukherji A, Kancharla PK. Org. Lett. 2020; 22: 2191
  • 9 Mukherji A, Addanki RB, Halder S, Kancharla PK. J. Org. Chem. 2021; 86: 17226
  • 10 Ghosh T, Mukherji A, Kancharla PK. Org. Lett. 2019; 21: 3490
  • 11 Colinas PA, Núñez NA, Bravo RD. J. Carbohydr. Chem. 2008; 27: 141
    • 12a Jordan MA, Wilson L. Nat. Rev. Cancer 2004; 4: 253
    • 12b Yoshimatsu K, Yamaguchi A, Yoshino H, Koyagi N, Kitoh K. Cancer Res. 1997; 57: 3208
  • 13 Abbate F, Casini A, Owa T, Scozzafava A, Supuran CT. Bioorg. Med. Chem. Lett. 2004; 14: 217
  • 14 Supuran CT, Briganti F, Tilli S, Chegwidde WR, Scozzafava A. Bioorg. Med. Chem. 2001; 9: 703
  • 15 Supuran CT, Scozzafava A, Menabuoni L, Mincione F, Briganti F, Mincione G. Eur. J. Pharm. Sci. 1999; 8: 317
  • 16 Liautard V, Pillard C, Desvergnes V, Martin OR. Carbohydr. Res. 2008; 343: 2111
  • 17 Colinas PA, Témpera CA, Rodríguez OM, Bravo RD. Synthesis 2009; 4143
  • 18 Griffith DA, Danishefsky SJ. J. Am. Chem. Soc. 1990; 112: 5811
  • 19 Colinas PA, Bravo RD. Org. Lett. 2003; 5: 4509
  • 20 Colinas PA, Bravo RD. Carbohydr. Res. 2007; 342: 2297
  • 21 Colinas PA, Bravo RD. Mol. Med. Chem. 2007; 62
  • 22 Colinas PA, Bravo RD. Tetrahedron Lett. 2005; 46: 1687
  • 23 Mała P, Pedersen CM. Eur. J. Org. Chem. 2021; 5685
  • 24 General Method to Synthesize Sulfonamidoglycosides from GlycalsGlycal (0.082–0.161 mmol, 1.0 equiv) and glycosyl sulfonamide acceptor (0.123–0.240 mmol, 1.5 equiv) was taken in a round-bottomed flask (10 mL). The flask was then filled with dry DCE, and catalyst TTBPy·HCl (20 mol%) was added to it. The mixtures were stirred at 40 °C in a sealed flask until the reaction was determined to be complete by either TLC or NMR analysis of the crude material. The reaction mixture was quenched by water (20 mL for 0.082 mmol) and it was extracted with DCM (3 × 15 mL for 0.082 mmol), dried over Na2SO4, and concentrated in vacuo and purified by silica gel column chromatography (Merck 60–120 mesh, 7 gm) followed by HPLC purification (using HPLC-grade acetonitrile solvent, flow rate 5 mL/min) for some of the compounds.
  • 25 3,4-O-(Tetraisopropyldisiloxane-1,3-diyl)-l-erythro-hexapyranosyl-2,6-dideoxy-α,β-l-rhamnopyranosyl Methanesulfonamide (4ee)According to general method, a solution of glycosyl donor 3,4-O-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl)-1,2,6-trideoxy-l-arabino-1-hexenopyranose 1e (50 mg, 0.134 mmol, 1.0 equiv) and glycosyl sulfonamide acceptor 2e (19 mg, 0.200 mmol, 1.5 equiv) in dry DCE at 40 °C was treated with 2,4,6-tri(tert-butyl)pyridinium hydrochloride catalyst (8 mg, 0.0268 mmol, 20 mol%) and stirred for 24 h to get the product 4ee as a colourless oil. Rf = 0.4 in 20% EtOAc/hexane, eluent 7% EtOAc in hexane, amount 45 mg, yield 72%. Selectivity α:β = 1:12.5. 1H NMR (400 MHz, CDCl3): δ = 5.35 (dd, J = 9.2, 3.3 Hz, 1 H), 4.79 (td, J = 11.1, 1.9 Hz, 1 H), 3.74 (ddd, J = 11.2, 8.1, 5.3 Hz, 1 H), 3.34 (dq, J = 12.3, 6.1 Hz, 1 H), 3.19 (t, J = 8.5 Hz, 1 H), 3.10 (s, 3 H), 2.22 (ddd, J = 12.8, 5.2, 1.9 Hz, 1 H), 1.58 (dd, J = 23.9, 11.3 Hz, 1 H), 1.29 (d, J = 5.8 Hz, 3 H), 1.08–0.92 (m, 28 H). 13C NMR (101 MHz, CDCl3): δ = 80.3, 79.2, 74.1, 73.9, 43.5, 39.7, 31.0, 30.4, 29.8, 18.2, 17.7, 17.5, 17.4, 17.4, 17.4, 17.3, 17.2, 17.2, 13.2, 13.0, 12.9, 12.4, 12.3. HRMS (ESI-QTOF): m/z calcd for C19H41O6NSSi2Na [M + Na] +: 490.2091; found: 490.2099. [α]D 22 –10 (c 0.40, CHCl3).
  • 26 3,4-Di-O-tert-butyldiphenylsilyl-2,6-dideoxy-α,β-l-rhamnopyranosyl Methanesulfonamide (5he)According to general method, a solution of glycosyl donor 3,4-di-O-tert-butyldiphenylsilyl-l-rhamnal 5h (50 mg, 0.082 mmol, 1.0 equiv) and glycosyl sulfonamide acceptor 2e (12 mg, 0.126 mmol, 1.5 equiv) in dry DCE at 40 °C was treated with 2,4,6-tri(tert-butyl)pyridinium hydrochloride catalyst (5 mg, 0.0164 mmol, 20 mol%) and stirred for 24 h to get the product 5he as a colourless oil. Rf = 0.4 in 20% EtOAc/hexane, eluent 7% EtOAc in hexane, amount 41 mg, yield 70%. Selectivity α:β = 7: 1. 1H NMR (600 MHz, CDCl3): δ = 7.52 (dd, J = 11.7, 4.6 Hz, 4 H), 7.46–7.45 (m, 1 H), 7.43–7.34 (m, 8 H), 7.31–7.23 (m, 6 H), 5.38 (td, J = 10.7, 1.6 Hz, 1 H), 4.90 (d, J = 10.6 Hz, 1 H), 4.03 (d, J = 1.6 Hz, 1 H), 3.92 (q, J = 7.3 Hz, 1 H), 3.49 (d, J = 2.8 Hz, 1 H), 3.10 (s, 3 H), 1.87–1.83 (m, 1 H), 1.60 (d, J = 13.1 Hz, 1 H), 1.29 (d, J = 7.4 Hz, 3 H), 0.98 (s, 9 H), 0.93 (s, 9 H). 13C NMR (151 MHz, CDCl3): δ = 135.9, 135.8, 135.7, 135.7, 133.8, 133.2, 133.1, 133.0, 130.1, 129.9, 129.9, 128.0, 127.9, 127.8, 127.8, 127.7, 76.0, 73.1, 71.3, 70.7, 43.6, 34.3, 27.0, 26.9, 19.3, 19.1, 16.8. HRMS (ESI-QTOF): m/z calcd for C39H51O5NSSi2NH4 [M + NH4] +: 719.3370; found: 719.3374. [α]D 22 –29 (c 0.80, CHCl3).