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ZUSAMMENFASSUNG

Hintergrund Der Stellenwert künstlicher Intelligenz (KI) hat

in der medizinischen Bildgebung in den letzten Jahren deu-

tlich zugenommen. Aufgrund der enormen Datenmengen

und strukturierbaren Aufgaben im diagnostischen Workflow

hat die KI in der onkologischen Hybridbildgebung besonders

vielversprechende Anwendungsgebiete für die Läsionsdetek-

tion, die Läsionscharakterisierung und die Therapiebeurtei-

lung. Vor dem Hintergrund rasanter Entwicklungen im Be-

reich des Machine Learning (ML) und des Deep Learning (DL)

ist von einer zunehmenden Bedeutung in der onkologischen

Hybridbildgebung auszugehen mit Potenzial, die klinische

Therapiesteuerung und patientenrelevante Ergebnisse zu ver-

bessern.

Methode und Ergebnisse Diese narrative Übersichtsarbeit

fasst die Evidenz in verschiedenen aufgabenbezogenen An-

wendungen der Bildanalyse von KI im Bereich der onkologi-

schen Hybridbildgebung zusammen. Nach Einführung in das

Thema der KI werden ausgewählte Beispiele exploriert, vor

dem Hintergrund aktueller Herausforderungen und im Hin-

blick auf die klinische Relevanz in der Therapiesteuerung dis-

kutiert.

Schlussfolgerung Der Einsatz von KI bietet vielverspre-

chende Anwendungen der Detektion, der Charakterisierung

und der longitudinalen Therapiebeurteilung im Bereich der

onkologischen Hybridbildgebung. Schlüsselherausforderun-

gen liegen in den Bereichen der Entwicklung von Algorith-

men, der Validierung und der klinischen Implementierung.

Kernaussagen:
▪ Mit der onkologischen Hybridbildgebung werden große

Datenvolumen aus 2 bildgebenden Modalitäten erzeugt,

deren strukturierte Analyse komplex ist.

▪ Für die Datenanalyse werden neue Methoden benötigt,

um eine schnelle und kosteneffiziente Beurteilung in allen

Aspekten der diagnostischen Wertschöpfungskette zu

ermöglichen.

▪ KI verspricht, die diagnostische Auswertung der onkologi-

schen Hybridbildgebung zu vereinfachen und wesentliche

Verbesserungen in Qualität und Effizienz bei der Erken-

nung, Charakterisierung und dem longitudinalen Monitor-

ing onkologischer Erkrankungen zu ermöglichen. Ziel ist

reproduzierbare, strukturierte, quantitative diagnostische

Daten für die evidenzbasierte onkologische Therapie-

steuerung zu generieren.

▪ Selektierte Anwendungsbeispiele in 3 ausgewählten

Tumorentitäten (Lungenkarzinom, Prostatakarzinom,

Neuroendokrine Tumore) zeigen wie KI-gestützte Applika-

tionen einen wesentlichen Beitrag in der automatisierten

Bildanalyse leisten und eine weitere Individualisierung von

Therapien ermöglichen könnten.

* Benedikt Feuerecker and Maurice M. Heimer contributed equally as first
author.
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ABSTRACT

Background Artificial intelligence (AI) applications have

become increasingly relevant across a broad spectrum of set-

tings in medical imaging. Due to the large amount of imaging

data that is generated in oncological hybrid imaging, AI appli-

cations are desirable for lesion detection and characterization

in primary staging, therapy monitoring, and recurrence

detection. Given the rapid developments in machine learning

(ML) and deep learning (DL) methods, the role of AI will have

significant impact on the imaging workflow and will eventual-

ly improve clinical decision making and outcomes.

Methods and Results The first part of this narrative review

discusses current research with an introduction to artificial

intelligence in oncological hybrid imaging and key concepts

in data science. The second part reviews relevant examples

with a focus on applications in oncology as well as discussion

of challenges and current limitations.

Conclusion AI applications have the potential to leverage the

diagnostic data stream with high efficiency and depth to facil-

itate automated lesion detection, characterization, and ther-

apy monitoring to ultimately improve quality and efficiency

throughout the medical imaging workflow. The goal is to gen-

erate reproducible, structured, quantitative diagnostic data

for evidence-based therapy guidance in oncology. However,

significant challenges remain regarding application develop-

ment, benchmarking, and clinical implementation.

Key Points:
▪ Hybrid imaging generates a large amount of multimodal-

ity medical imaging data with high complexity and depth.

▪ Advanced tools are required to enable fast and cost-

efficient processing along the whole radiology value chain.

▪ AI applications promise to facilitate the assessment of

oncological disease in hybrid imaging with high quality

and efficiency for lesion detection, characterization, and

response assessment. The goal is to generate reproduci-

ble, structured, quantitative diagnostic data for evidence-

based oncological therapy guidance.

▪ Selected applications in three oncological entities (lung,

prostate, and neuroendocrine tumors) demonstrate how

AI algorithms may impact imaging-based tasks in hybrid

imaging and potentially guide clinical decision making.

Citation Format
▪ Feuerecker B, Heimer M, Geyer T et al. Artificial Intelli-

gence in Oncological Hybrid Imaging. Fortschr Röntgenstr

2023; 195: 105–114

Introduction

Artificial intelligence (AI) applications are believed to provide pro-
mising tools for the analysis of evolving multi-omics data in diag-
nostic medicine [1]. With significant methodological advances in
AI, applications continue to improve and may support experts in
task-specific applications [2]. However, to date, AI applications
cannot replace physicians in complex tasks that require human-
guided decisions and interactions. While moving through the
hype cycle with respect to expectations towards AI, the initial eu-
phoria is currently being dampened by studies with a clear focus
on limitations and weaknesses [3]. Due to the level of digitaliza-
tion and natural accruement of big data, AI applications might
add value to patient care by assisting physicians in simple tasks
[4, 5]. With disproportionate growth of imaging data in a single
examination, measures to increase productivity and to leverage
data are desired to assist physicians and technicians with pre-
screened data, optimizable raw images/post-processing tools,
and quantitative features along the whole imaging workflow [6].
Hybrid imaging is the combination of morphological (CT/MRI)
and functional imaging using a variety of radiotracers such as
18F-FDG, 68Ga/18F-PSMA, or 18F-SIFA-TATE, and provides comple-
mentary information regarding, e. g., tumor characteristics and
metabolism. This method generates huge datasets with only por-
tions of data such as standardized uptake values (SUV) or tumor
size currently being used. Deep learning might benefit from the
application of artificial intelligence in automated raw image pre-
processing to refine image quality with promising applications in
ultra-low radiation imaging, attenuation correction, and de-
noising [7, 8]. Further areas of implementation include image re-

construction, image processing, and automated image analysis by
machine learning approaches [9]. The main clinical applications of
radiomics might apply in a diagnostic context to image-based ap-
plications including particularly time-consuming tasks such as le-
sion detection, characterization, and monitoring [9] (▶ Fig. 1),
which can be considered challenging with increasing numbers of
tumor manifestations, examination time points, and heterogene-
ity of tumor burden [9]. The impact of whole tumor burden het-
erogeneity assessment in imaging studies will likely evolve as an
interesting field of study since biopsies are prone to sampling er-
ror that is hardly addressed in current practice [10]. Beyond diag-
nostics, accurate delineation and segmentation tasks play a cru-
cial role in radiotherapy treatment planning [11].

Hybrid imaging including PET/CT and PET/MRI provides com-
plementary imaging data allowing a multifaceted anatomical,
functional and molecular characterization of tumor manifesta-
tions. With different radiotracers, hybrid imaging is applied in
most malignant tumors including lung cancer, prostate cancer,
and neuroendocrine tumors with significant effects on patient
management compared to conventional imaging algorithms as
reflected by German and international guidelines [12–14]. The
limitations of single-modality imaging are overcome by the
strengths of the complementary modality, e. g. superior lesion
detection in PET and superior anatomical resolution in CT or MRI,
with consecutively significantly increased diagnostic accuracy
[15].

While the benefits of automated tumor delineation, tumor
characterization, or tools for longitudinal tumor volume monitor-
ing are intuitive, AI-enhanced analysis methods facilitate the
extraction of more subtle information from imaging data that
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are mostly undetectable for human readers with deep learning
approaches. As of now, the majority of AI studies in hybrid
imaging are retrospective, with a lack of clinical translation due
to unresolved limitations in algorithm development, validation,
and clinical implementation [16]. Additionally, prospective trials
on the applications of artificial intelligence are scarce and there-
fore do not allow for general translation of results on larger co-
horts and further indications. Multicenter, randomized controlled,
prospective trials will be necessary to demonstrate the usefulness

of radiomics and to scrutinize retrospective results of radiomics
and AI imaging studies [17].

Prospectively, oncological applications of AI beyond imaging-
based tasks will focus on a holistic integration of multi-source di-
agnostic data including radiomics, genomics, and metabolomics
to personalize diagnostics at the molecular, cellular, and organism
level [4, 18, 19]. In this narrative review, we provide an overview
of AI applications in oncological hybrid imaging. The first part pro-
vides an introduction into the principles of AI for the analysis of

Medical 
reporting

Image 
analysis

Image 
acquisition

Integrated
diagnostics

a  Detection
Lung cancer Prostate cancer Neuroendocrine tumors

b  Segmentation/Characterization

c  Monitoring

Lung cancer

Lung cancer

Baseline Follow up Follow up

Prostate cancer

Pre-
processing

▶ Fig. 1 Applications of AI in oncological imaging along the radiology workflow: a Detection of lesions in schematic drawings of patients with lung
cancer, prostate cancer, and neuroendocrine tumor, b Characterization of solitary lesions in axial PET/CT reconstructions of lung cancer and pros-
tate cancer, additional circles drawn to highlight the areas of interest. c Longitudinal monitoring of single lesions with regard to aforementioned
characteristics allowing response assessment (axial PET-reconstruction) in lung cancer with changing characteristics over time.
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medical imaging data with review of the most recent literature
related to applications in oncological hybrid imaging. The second
part discusses AI applications in hybrid imaging in lung cancer,
prostate cancer, and neuroendocrine tumors.

Technical realization, basics of data
acquisition, and analysis

Radiomics

The combination of automated quantitative image analysis with
supervised machine learning (ML) is often referred to as radiomics
(▶ Fig. 2) [20, 21]. Quantitative analysis describes image-based
features with regard to tumor shape, distribution of intralesional
signal intensities (often referred to as histogram statistics), and

texture, i. e., spatial relationships of voxels and their respective
grayscale patterns, resulting in a large, high-dimensional feature
space. Since many of these image features may show strong cor-
relations, a feature selection step may be helpful to reduce the
number of intercorrelated image features.

This image-derived feature space can then be linked to clinical
outcomes, such as diagnosis, prognosis, or treatment response,
by fitting or training statistical or machine learning models to the
data. Ultimately, trained models may then be used to predict clin-
ical outcomes from imaging features. Popular models for these
applications are generalized linear models, support vector ma-
chines, and random forests [9].

Machine
learning

and
prediction

Radiological
images

Tumor
segmentation

Feature
extraction

Radiological
images

Neural network
training

and
prediction

Class 
A

Class A

Class 
B

Class B

Radiomics classification Deep learning image classification

▶ Fig. 2 Applications of AI in radiomic classification and deep learning algorithms. The first row shows the radiomics approach, comprising tumor
segmentation, extraction of handcrafted features, and training of an ML model. The bottom row illustrates an automated approach of a deep
learning algorithm with convolutional neural networks.
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Deep Learning Algorithms

Deep learning (DL) methods have gained considerable interest
within medical imaging research. In DL the algorithm learns a
composition of features that reflect a hierarchy of structures in
the data [22]. These systems allow leveraging of the composition-
al nature of images by an end-to-end approach integrating image-
based features [22]. In contrast to traditional ML approaches,
deep learning (DL) models based on convolutional neural net-
works (CNN) do not require a predefined definition of image fea-
tures but are able to learn relevant features directly from imaging
data [6, 9, 23]. Beyond the prediction of patient outcome, DL is
particularly useful for object detection, e. g. localization of lung
nodules, or image segmentation for the assessment of tumors or
organs. The quality and quantity of imaging data for training and
validation play a pivotal role in the clinical application of DL mod-
els. Due to the high number of free parameters that need to be
determined in model training, DL models are particularly data-
hungry and require large amounts of curated and possibly ex-
pert-annotated imaging data. Since DL models can easily be over-
fitted to training data, the reliability of trained models and the
quality of predictions need to be assessed and validated carefully
on independent data sets which are not used during training. A
high level of evidence is reached by validation on entirely indepen-
dent data [16].

Hybrid imaging and machine learning

From a technical perspective, the fusion and integration of ima-
ging modalities such as PET and CT/MRI from hybrid imaging is
straightforward, when images from both modalities are suffi-
ciently aligned – either through simultaneous acquisition or im-
age registration. In radiomics approaches, quantitative image fea-
tures can then be calculated from each image contrast separately
and extend the feature space, i. e., the number of features derived
from each tumor or metastasis. Likewise, in a CNN approach, im-
age contrasts can be combined in channels –much like in the case
of red, green, and blue channels for standard photographic ima-
ges. In both approaches, the increased information content of
the enlarged feature space needs to be accounted for in the statis-
tical modelling approach. An enlarged feature space requires
models that can store more information resulting in greater sus-
ceptibility to overfitting or memorizing of the training data.
Therefore, rigorous model validation plays a crucial role in hybrid
imaging.

To fully exploit the potential of complementary hybrid imaging
information, several tumor co-segmentation methods were pro-
posed in hybrid imaging [15]. Potenzial clinical applications will in-
clude identification of dedifferentiation patterns as observed in
neuroendocrine tumors or malignant transformation of lympho-
ma that are associated with a worse prognosis [24, 25]. Another
highly relevant application will be lesion characterization, for in-
stance of lymph nodes with central necrosis, that can be associat-
ed with a worse prognosis in a variety of malignancies including
sarcoma [26].

Applicability of AI for imaging data optimization

AI applications were recently successfully evaluated for attenua-
tion correction, pre- and postprocessing, co-registration of data,
and PET or MRI/CT-based motion correction. A detailed review of
potential applications can be found in [6].

Limitations, challenges, and perspectives

To meet the high standards in medical imaging, a variety of chal-
lenges will have to be addressed to realize and accelerate the clin-
ical translation of relevant AI applications in medical imaging. Un-
ambiguous nomenclature and clear definition of intended use of
models are prerequisites for broad implementation to differenti-
ate mere data mining approaches from (semi-) automated task-
based applications and to fully integrate tools into the medical
imaging value chain [17].

From a radiomics perspective, processing of both small cohorts
and unstructured big data will not yield sufficiently robust algo-
rithms to overcome unresolved obstacles in standardization such
as a lack of protocol harmonization and data heterogeneity [27].
While small data sets will eventually lead to overfitting of algo-
rithms, unstructured big data sets will be insufficient for training
purposes, thus generating inaccurate algorithms. Therefore, the
population for training and validation purposes must be suffi-
ciently powered, well-balanced, and organized with regard to
complexity and application-relevant features.

With significant preanalytical heterogeneities, harmonization
of PET imaging remains challenging. Divergences may for in-
stance originate in a broad spectrum of applied dose, distinctive
physiological uptake patterns, different attenuation correction
methods, and scanner-related differences in image acquisition
and reconstruction algorithms [16]. From our experience, this
compares to morphological imaging protocols including both CT
and MRI, with a relevant spectrum of applied contrast agents,
time between application of contrast agents, and modality
parameters. Technical factors and reconstruction algorithms
have a substantial impact on the quality of the extracted radio-
mics features and need to be considered [28]. Systematic metho-
dical flaws need to be identified using independent external vali-
dation providing meaningful performance metrics [17, 29]. For
this purpose checklists for the development and evaluation of ar-
tificial intelligence tools in medical imaging have been designed
to improve the quality of studies [30, 31].

At this point, integrated AI applications for the structured anal-
ysis of hybrid imaging data remain scarce, particularly due to data
privacy and the lack of publicly available, expert-annotated hybrid
imaging data sets [6]. Structured data repositories, such as The
Cancer Imaging Archive (TCIA), and large-scale, privacy-preser-
ving initiatives, such as the Radiology Cooperative Network
(RACOON), promise to increase sample sizes for the development
of AI models, possibly with federated learning approaches [27].

From an ethical and medicolegal perspective, AI applications in
medical imaging will require detailed explanation regarding de-
velopment and codebase with proof of validation and safety stud-
ies for approval before broad clinical implementation. In Europe,
medical devices including AI-based algorithms are not approved
by a centralized agency and will be regulated depending on their
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risk potential. While high-risk devices (IIa, IIb, and III) are handled
and certified by accredited, notified bodies in Europe, low-risk de-
vices will be released at the sole responsibility of the manufacturer
and ultimately also the user [32]. In contrast, in the US medical
devices including AI-based algorithms are cleared in three path-
ways: the premarket approval pathway (for risk-associated devi-
ces), the de-novo premarket review (for low and moderate-risk
devices), and the 510(k) pathway [32]. With regard to the spec-
trum of approved AI applications, Luchini et al. reported that a to-
tal of 71 oncology-related AI applications had been approved by
the FDA as of the May 31, 2021, with 39 (55%) applications in can-
cer radiology [33]. Of these the majority are intended as an inte-
grative application, potentially representing the decisive step in
the diagnostic workflow of cancer patients, with only one applica-
tion for de-noising of PET-images in hybrid imaging [33]. Finally,
from a clinical workflow perspective, AI products will require
seamless integration in the diagnostic workflow with transparent
and explainable results to support decision making.

Applications of AI in oncological hybrid
imaging

The following chapter reviews relevant clinical applications of AI in
more detail for lung cancer, prostate cancer, and neuroendocrine
tumors, where hybrid imaging has a significant impact on therapy
guidance and clinical decision making in a tertiary medical center.
Further successful fields of AI application of PET/CT and PET/MRI
include lymphoma [34, 35], breast [36] and brain cancer [37], cer-
vical cancer [38] for which a multitude of studies report relevant
clinical findings, e. g., correlations of SUVmax of the primary breast
tumor and significantly more frequently local recurrence in sur-
veillance [36].

Lung cancer

According to the German S3-guideline, hybrid imaging with
18F-fluorodeoxyglucose (18F-FDG) PET/CT is an established stand-
ard in the diagnostic algorithm of both small-cell lung cancer
(SCLC) and non-small cell lung cancer (NSCLC) [39]. Compared to
conventional CT, 18F-FDG PET/CT provides significantly improved
delineation of the primary tumor and accurate assessment of
metastases compared to conventional CT, detecting unexpected
lesions with significant effects on therapy management in 20–
25% of cases [40, 41]. Currently, well-established single-modality
AI applications exist in CT for pulmonary nodule detection, with
impact of lesion size and quantity on T- and eventually M-stage
classification and therapy planning in lung cancer [42]. Pulmonary
nodules have a variety of CT-attenuation patterns with well-de-
fined margins between solid components and healthy lung par-
enchyma, unclear margins in subsolid and ground-glass compo-
nents, and even more heterogeneous borders in cases of
associated local infiltration, atelectasis, and pneumonic consolida-
tion. Using an automated image analysis approach, intrapulmon-
ary lesions can be assessed with regard to different characteristics
[43, 44]. The Dutch-Belgian lung cancer screening trial (NELSON),
for example, was the first screening trial to apply semi-automated

computer aided-volumetry (CAV) instead of handcrafted meas-
urements, thereby achieving high negative predictive values and
presumably fewer false-positive results compared to other lung
cancer screening trials [45, 46]. Also PET-based single modality
approaches have been studied and shown promising results in
segmentation of both pulmonary nodules and thoracic lymph
nodes to predict outcome [47].

However, there are also few well-documented examples of
true multi-modality AI applications in lung cancer. Wallis et al.,
for example, developed a deep learning method to detect patho-
logical mediastinal lymph nodes from whole-body 18F-FDG PET/
CT. Model performance was comparable to that of an expert read-
er on data from the same type of scanner, and transfer learning
allowed translation to other scanners [48]. Zhao et al. proposed a
fully convolutional neural network on a cohort of 84 patients with
lung cancer who underwent 18F-FDG PET/CT showing that co-seg-
mentation networks can combine the advantages of two modal-
ities effectively outperforming single-modality applications [15].
From a clinical perspective, this approach appears valuable in as-
sessing the primary pulmonary malignancy to guide T-stage clas-
sification. Beyond segmentation, multi-modality applications
have been shown to impact lesion characterization and prognos-
tication. In a retrospective multi-institutional study, Mu et al.
showed that a radio-genomic deep learning approach can be
used to predict EGFR status with weak but significant inverse cor-
relation to PD-L1 status for noninvasive decision support in NSCLC
[49]. The algorithm yielded an area under the receiver operating
characteristics curve of 0.81 with an accuracy of 78.5% in an ex-
ternal test cohort of 65 patients with higher performance when
integrating anatomical and metabolic information compared to
single-modality approaches [49]. Yet, due to the limited ROC,
physicians may not fully omit biopsy as a tool to guide treatment
on a patient level, notably when deciding for or against a certain
treatment. Further studies are required to improve the perform-
ance of these algorithms to safely guide treatment selection.

Prostate cancer

Hybrid imaging with prostate specific membrane antigen (PSMA)
ligands has gained broad application in prostate cancer including
biochemical recurrence, primary staging in high-risk disease
(Gleason score > 7, PSA > 20 ng/mL, clinical stage T2c-3a), and re-
sponse assessment with significant impact on clinical decision
making, particularly in the detection of metastatic lymph nodes
and bone metastases [50–53]. In this context, most AI applica-
tions focus on single-modality approaches for lesion detection.
Kostyszyn et al. developed a CNN approach based on 68Ga-PSMA
PET to assess intraprostatic gross tumor volume in a multi-center
study of 152 patients with retrospective histopathologic correla-
tion [54]. Results demonstrated fast and robust auto-segmenta-
tion of the intraprostatic tumor volume not only in 68Ga- but also
in 18F-PSMA PET/CT compared to manual segmentation and semi-
automatic thresholding, which encouragingly shows translatabil-
ity between differently labelled PSMA ligands [54]. In another
study, an ML algorithm was trained on 72 prostate cancer patients
for lesion detection, analyzing 77 radiomic features in 68Ga-PSMA
PET/ low dose CT to differentiate physiological from pathological
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radiotracer uptake, resulting in high sensitivity (97 %) with lower
specificity (82%) due to frequent misinterpretation of physiologic
PSMA uptake in glands [55]. To assess whole-body tumor burden,
a semi-automatic software package (qPSMA) for 68Ga-PSMA PET/
CT was introduced and validated with high correlation between
total lesion metabolic volume and PSA levels [56]. Using this tool,
patients with very high tumor load showed a significantly lower
uptake of 68Ga-PSMA-11 in normal organs confirming a tumor
sink effect [57]. This has clinical implications, as similar effects
might occur with PSMA-targeted radioligand therapy, making
this tool interesting for pre-therapeutic stratification. Without
exceeding the radiation dose limits for organs at risk, these
patients might potentially benefit from increased therapeutic
activity [57]. In another single-center cohort of 83 patients, Moa-
zemi et al. investigated deep learning applications in pre-thera-
peutic 68Ga-PSMA PET/CT for lesion detection and 177Lu-PSMA
therapy guidance in metastatic prostate cancer, showing high di-
agnostic accuracy [58]. Radiomic features (SUVmin, SUV correla-
tion, CT min, CT busyness and CT coarseness) in 68Ga-PSMA PET/
CT and clinical parameters such as Alp1 and Gleason score yielded
strong correlations with changes in prostate-specific antigen
(PSA) to predict outcome [58, 59]. This finding also points in the
direction of integrated diagnostics where the integration of multi-
source diagnostic data from medical imaging, pathology, liquid
biopsy, and clinical findings is analyzed to achieve optimized diag-
nostic accuracy in evidence-based clinical decision guidance.

Only a few true hybrid deep learning applications have been
evaluated in prostate cancer imaging, including prediction and re-
sponse assessment. Papp et al. developed an ML approach to pre-
dict low vs. high lesion risk, biochemical recurrence, and overall
patient risk using 68Ga-PSMA PET/MRI with excellent cross-valida-
tion performance based on a cohort of 52 patients selected from a
prospective randomized trial in primary prostate cancer [60]. The
algorithm yielded 89% and 91% accuracy in biochemical recur-
rence and overall patient risk, respectively. In this study, feature
ranking demonstrated that molecular 68Ga-PSMA PET was the
dominant in vivo feature source for lesion risk prediction compar-
ed to MRI which yielded ADC but not T2w parameters as high-
ranking features. The authors hypothesized that integration of
PSMA and ADC features in a model scheme could deliver a super-
ior predictive value [60]. However, notably the latter study may be
difficult to interpret due to methodical limitations such as lack of
inter- and intrareader variability analysis and omission of a final
model with validation on an independent test set.

Neuroendocrine tumors

Neuroendocrine neoplasms (NEN) are a heterogeneous group of
malignancies with a variety of histological subtypes, primary loca-
tion, and functional status. NEN are classified as differentiated
neuroendocrine tumors (NET) with preserved somatostatin re-
ceptor (SSTR) status and poorly differentiated neuroendocrine
carcinomas (NEC). Since NETs usually progress slowly and several
treatment options are available, the prevalence of NETs is increas-
ing along with the number of imaging examinations, which often
show significant metastatic tumor burden, impacting the radiolo-
gic workload [61]. To address these difficulties and to improve

standard of care, the European Neuroendocrine Tumor Society
(ENETS) promotes structured reporting in radiology and molecu-
lar imaging studies [62, 63].

Hybrid PET/CT imaging with somatostatin-receptor agonists,
such as 68Ga-DOTA-TATE, 68Ga-DOTA-TOC and most recently
18F-SiFAlin-TATE, allows longitudinal multimodal assessment of
morphology and SSTR expression in therapy guidance in NETs
[64]. While tracer biodistribution of the established SSTR agonists
is similar, minor, yet existing differences in physiological distribu-
tion profiles may pose a challenge for an automated image-seg-
mentation approach. Single-modality AI applications have shown
their potential in the diagnostic workup to help distinguish pa-
thology, aid lesion detection, and facilitate response assessment
in NETs. Criteria-based reporting systems including RECIST 1.1
and the Krenning Score allow patient stratification in a single-
modality approach, with SSTR-RADS serving as an example for
multimodal assessment criteria, which could help structure the
outcome of classifications-based algorithms [65].

Promising results have been reported with respect to AI appli-
cations for grading in both CT and MRI in preoperative morpholo-
gical imaging studies [66, 67]. Liberini et al. and Atkinson et al.
provide convincing data to suggest that statistical and histo-
gram-based parameters of SSTR-ligand PET may have added value
for prediction and therapy response [68, 69]. Recently, SSTR ex-
pressing tumor volume and total lesion SSTR expression were pro-
posed as first-order molecular prediction biomarkers assessed by
AI [69–71]. Skewness and kurtosis of tumor lesions on pretreat-
ment 68Ga-DOTA-TATE PET/CT were shown to predict responsive-
ness to radionuclide peptide treatment [71]. However, these first-
order features do not necessarily reflect true radiomic features to
use the hidden potential of imaging data. Wehrend et al. devel-
oped a DL algorithm to automatically detect tumor lesions in
68Ga-DOTA-TATE PET in a study of 125 patients [72]. Despite pro-
mising results, high physiological liver uptake and comparably low
spatial resolution hamper the diagnostic accuracy of PET with
SSTR analogs in the detection of liver lesions, making hybrid ima-
ging with MRI desirable. Fehrenbach et al. developed a DL algo-
rithm in gadoxetic-acid (Gd-EOB)-enhanced MRI for the assess-
ment of hepatic tumor burden in NEN based on an initial training
cohort of 222 imaging studies. Their application shows high accu-
racy in the detection and quantification of liver metastasis, facili-
tating clinical decision making in multidisciplinary cancer confer-
ences [61]. Taking both into account, it is likely that integration of
complementary data streams could refine AI algorithms. Yet most
studies focus on automated assessment of hepatic tumor burden
in NEN with very limited available literature evaluating the per-
formance and added value of fused hybrid imaging features for
therapy guidance in NETs.

Discussion and conclusions

The application of AI in hybrid medical imaging offers potential for
the automated delineation, noninvasive characterization, and
longitudinal monitoring of oncological diseases. Yet, many hur-
dles remain to be addressed before AI can be implemented in dai-
ly routines. Validation of AI tools will require methodological ap-
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proaches and significant evidence with prospective trials to de-
monstrate the impact of AI tools on patient outcomes [16, 17].
In the near feature AI applications will more likely represent addi-
tional tools rather than standalone diagnostic algorithms [28].

Undoubtedly, hybrid imaging has significant advantages re-
garding diagnostic accuracy compared to its complementary
standalone modalities but new challenges with respect to data
volume and structured analysis need to be overcome to fully ex-
ploit its potential in the context of precision medicine [20]. Task-
based applications in lung cancer, prostate cancer, and neuroen-
docrine tumors indicate that technical implementation is feasible
with significant impact on the medical imaging work stream and
may in the future provide down-stream clinical decision support
in precision oncology [73, 74]. With innovative molecular and cel-
lular oncological treatments, multi-modality applications may im-
pact therapy guidance by assessing complex therapy response
patterns and metastatic heterogeneity. AI applications present as
transformative technology to supersede single-modality algo-
rithms for automated detection, noninvasive characterization,
and longitudinal monitoring of oncological disease in hybrid ima-
ging [12]. However, true complementary multi-modality algo-
rithms remain scarce with a majority of applications being based
on single-modality approaches. In addition to the aforemen-
tioned, applications of artificial intelligence have also been eval-
uated in a variety of other malignancies. In renal cell cancer, PET/
MRI radiomic signatures analyzed in three separate feature sets
showed that the combined functional and structural information
of PET/MRI had a higher correlation with tumor microvascular
density [75]. Additionally, promising results from using fusion
models that integrate data from CT/MRI/PET have been reported
and showed better results than separate image analysis [76].

To close the translational gap of AI applications in medical hy-
brid imaging, challenges need to be addressed to improve safety,
quality, and ultimately public trust [9, 27]. While expectations re-
garding AI tools in medical imaging have become more critical, by
focusing on the limitations and weaknesses of the technology,
we expect future research and development to yield valuable
task-based tools for medical imaging in radiology and nuclear
medicine.
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