Synthesis 2023; 55(01): 27-44
DOI: 10.1055/a-1921-8710
short review

α-Haloenamides: Synthesis and Subsequent Transformations

Laurence Feray
,
Michèle P. Bertrand
,
Aurélien Galibert-Guijarro


Abstract

The aim of this Short Review is to give an updated overview of the synthesis of α-haloenamides, which constitute a versatile subclass of enamides. α-Haloenamides can be prepared from ynamides, acetamides, or gem-dibromoalkenes in the presence of N-nucleophiles and easily converted into more elaborated structures through halogen-metal exchange and transition-metal-catalyzed cross-coupling reactions.

1 Introduction

2 α-Haloenamide Synthesis

2.1 Hydrohalogenation of Ynamides

2.1.1 cis-Hydrohalogenation of Ynamides

2.1.2 trans-Hydrohalogenation of Ynamides

2.2 α,β-Dihalogenation

2.2.1 lodochlorination and Iodobromination of Ynamides

2.2.2 Iodofluorination of Ynamides

2.3 Chloroselenation of Ynamides

2.4 Carbohalogenation of Ynamides

2.4.1 Carboiodination

2.4.2 Chloroallylation

2.4.3 Chloro-benzhydrylation

2.4.4 Chloro-γ-hydroxylation

2.5 Vilsmeier–Haack Reactions

2.6 Cross-Coupling Reaction of gem-Dibromoalkenes in the Presence of N-Nucleophiles

3 Transformations of α-Haloenamides

3.1 Suzuki and Sonogashira Reactions

3.2 Heck Reaction

3.3 Stille Reaction

3.4 Miscellaneous Applications

3.4 Carbonylation

3.4.2 Reduction

3.4.3 Synthesis of α-Fluoroimides

3.4.4 Palladium-Catalyzed Intramolecular Cyclization

4 Conclusion



Publication History

Received: 26 July 2022

Accepted after revision: 09 August 2022

Accepted Manuscript online:
09 August 2022

Article published online:
26 October 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Stork G, Terrell R, Szmuszkovicz J. J. Am. Chem. Soc. 1954; 76: 2029

    • For selected examples, see:
    • 3a Kuranaga T, Sesoko Y, Inoue M. Nat. Prod. Rep. 2014; 31: 514
    • 3b Toumi M, Couty F, Evano G. Angew. Chem. Int. Ed. 2007; 46: 572
    • 3c Suksamrarn S, Suwannapoch N, Aunchai N, Kuno M, Ratananukul P, Haritakun R, Jansakul C, Ruchirawat S. Tetrahedron 2005; 61: 1175
    • 3d Fronko RM, Lee JC, Galazzo J, Chamberland S, Malouin F, Lee MD. J. Antibiot. 2000; 53: 1405
    • 3e Yaguchi S.-i, Fukui Y, Koshimizu I, Yoshimi H, Matsuno T, Gouda H, Hirono S, Yamazaki K, Yamori T. J. Natl. Cancer Inst. 2006; 98: 545

      For general reviews on ynamides, see;
    • 4a Zificsak CA, Mulder JA, Hsung RP, Rameshkumar C, Wei L.-L. Tetrahedron 2001; 57: 7575
    • 4b DeKorver KA, Li H, Lohse AG, Hayashi R, Lu Z, Zhang Y, Hsung RP. Chem. Rev. 2010; 110: 5064
    • 4c Evano G, Coste A, Jouvin K. Angew. Chem. Int. Ed. 2010; 49: 2840
    • 4d Wang X.-N, Yeom H.-S, Fang L.-C, He S, Ma Z.-X, Kedrowski BL, Hsung RP. Acc. Chem. Res. 2014; 47: 560
    • 4e Cook AM, Wolf C. Tetrahedron Lett. 2015; 56: 2377
    • 4f Evano G, Theunissen C, Lecomte M. Aldrichimica Acta 2015; 48: 59
    • 4g Theunissen C, Métayer B, Lecomte M, Henry N, Chan H.-C, Compain G, Gérard P, Bachmann C, Mokhtari N, Marrot J, Martin-Mingot A, Thibaudeau S, Evano G. Org. Biomol. Chem. 2017; 15: 4399
    • 4h Evano G, Michelet B, Zhang C. C. R. Chim. 2017; 20: 648
    • 4i Zhou B, Tan T.-D, Zhu X.-Q, Shang M, Ye L.-W. ACS Catal. 2019; 9: 6393
    • 4j Chen Y.-B, Qian P.-C, Ye L.-W. Chem. Soc. Rev. 2020; 49: 8897
    • 4k Luo J, Chen G.-S, Chen S.-J, Yu J.-S, Li Z.-D, Liu Y.-L. ACS Catal. 2020; 10: 13978
    • 4l Mahe C, Cariou K. Adv. Synth. Catal. 2020; 362: 1
    • 4m Tan T, Wang Z, Qian P, Ye L. Small Methods 2020; 2000673
  • 5 Cao W, Chen P, Wang L, Wen H, Liu Y, Wang W, Tang Y. Org. Lett. 2018; 20: 4507
  • 6 Mulder JA, Kurtz KC. M, Hsung RP, Coverdale H, Frederick MO, Shen L, Zificsak CA. Org. Lett. 2003; 5: 1547
  • 7 Reddy AS, Suraj MA, Swamy KC. K. J. Chem. Sci. 2021; 133: 6
  • 8 Sato AH, Ohashi K, Iwasawa T. Tetrahedron Lett. 2013; 54: 1309
  • 9 Ohashi K, Mihara S, Sato AH, Ide M, Iwasawa T. Tetrahedron Lett. 2014; 55: 632
  • 10 Ide M, Ohashi K, Mihara S, Iwasawa T. Tetrahedron Lett. 2014; 55: 2130
  • 11 Sato AH, Ohashi K, Ito K, Iwasawa T. Tetrahedron Lett. 2013; 54: 2878
    • 12a Li Z, Ebule R, Kostyo J, Hammond GB, Xu B. Chem. Eur. J. 2017; 23: 12739
    • 12b Liang S, Ebule R, Hammond GB, Xu B. Org. Lett. 2017; 19: 4524
  • 13 Zeng X, Lu Z, Liu S, Hammond GB, Xu B. J. Org. Chem. 2017; 82: 13179
  • 14 Compain G, Jouvin K, Martin-Mingot A, Evano G, Marrot J, Thibaudeau S. Chem. Commun. 2012; 48: 5196
  • 15 Métayer B, Compain G, Jouvin K, Martin-Mingot A, Bachmann C, Marrot J, Evano G, Thibaudeau S. J. Org. Chem. 2015; 80: 3397
  • 16 Zeng X, Li J, Ng CK, Hammond GB, Xu B. Angew. Chem. Int. Ed. 2018; 57: 2924
    • 17a Lee J.-W, Oliveira MT, Jang HB, Lee S, Chi DY, Kim DW, Song CE. Chem. Soc. Rev. 2016; 45: 4638
    • 17b Engle KM, Pfeifer L, Pidgeon GW, Giuffredi GT, Thompson AL, Paton RS, Brown JM, Gouverneur V. Chem. Sci. 2015; 6: 5293
  • 18 Maity P, Klos MR, Kazmaier U. Org. Lett. 2013; 15: 6246
  • 19 Furuya T, Strom AE, Ritter T. J. Am. Chem. Soc. 2009; 131: 1662
  • 20 Prabagar B, Nayak S, Mallick RK, Prasad R, Sahoo AK. Org. Chem. Front. 2016; 3: 110
  • 21 Kim SW, Um T.-W, Shin S. Chem. Commun. 2017; 53: 2733
  • 22 Wen H, Yan W, Chen P, Li Y, Tang Y. J. Org. Chem. 2020; 85: 12870

    • For mechanistic discussion, see:
    • 23a Singh K, Staig SJ, Weaver JD. J. Am. Chem. Soc. 2014; 136: 5275
    • 23b Zhang H, Xu Q, Yu L, Yu S. Eur. J. Org. Chem. 2020; 1472 ; and refs cited therein
  • 24 Che J, Li Y, Zhang F, Zheng R, Bai Y, Zhu G. Tetrahedron Lett. 2014; 55: 6240
  • 25 He G, Qiu S, Huang H, Zhu G, Zhang D, Zhang R, Zhu H. Org. Lett. 2016; 18: 1856
  • 26 Zhu G, Qiu S, Xi Y, Ding Y, Zhang D, Zhang R, He G, Zhu H. Org. Biomol. Chem. 2016; 14: 7746
  • 27 Ide M, Yauchi Y, Iwasawa T. Eur. J. Org. Chem. 2014; 3262
  • 28 Xi Y, Zhu G, Tang L, Ma S, Zhang D, Zhang R, He G, Zhu H. Org. Biomol. Chem. 2017; 15: 7218
  • 29 Goulart TA. C, Back DF, Moura E, Silva S, Zeni G. J. Org. Chem. 2021; 86: 980
  • 30 Chechik-Lankin H, Livshin S, Marek I. Synlett 2005; 2098
  • 31 Dwadnia N, Lingua H, Mouysset D, Mimoun L, Siri D, Feray L. J. Org. Chem. 2020; 85: 4114
  • 32 Lu Z, Kong W, Yuan Z, Zhao X, Zhu G. J. Org. Chem. 2011; 76: 8524
  • 33 Chen L, Yu L, Deng Y, Cui Y, Bian G, Cao J. Org. Biomol. Chem. 2016; 14: 564
  • 34 Yabuuchi Y, Kuzuguchi T, Yoshimura T, Matsuo J. Org. Lett. 2016; 18: 4951
  • 35 Beng TK, Wilkerson-Hill SM, Sarpong R. Org. Lett. 2014; 16: 916
  • 36 Surgenor RR, Grote AC, McGeough C, Narayanan A, Wang W, Collier PN. J. Org. Chem. 2020; 85: 14158
  • 37 Jouvin K, Coste A, Bayle A, Legrand F, Karthikeyan G, Tadiparthi K, Evano G. Organometallics 2012; 31: 7933
  • 38 Bassler DP, Spence L, Alwali A, Beale O, Beng TK. Org. Biomol. Chem. 2015; 13: 2285
  • 39 Hou Y, Ma J, Yang H, Anderson EA, Whiting A, Wu N. Chem. Commun. 2019; 55: 3733
  • 40 Yabuuchi Y, Sakamoto K, Yoshimura T, Matsuo J.-I. Tetrahedron 2018; 74: 4053
  • 41 Mi R, Chen H, Zhou X, Li N, Ji D, Wang F, Lan Y, Li X. Angew. Chem. Int. Ed. 2022; 61: 202111860