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Hereditary angioedema (HAE) is characterized by recurrent
mucosal and cutaneous swellings, resulting from excessive
bradykinin generation, which is the end product of the
kallikrein/kinin system.1,2 HAE predominantly occurs in
patients with congenital C1-inhibitor deficiency. C1-inhibi-
tor controls the activation of factor XII (FXII) and plasma
prekallikrein (PK). Notably, bradykinin-mediated HAE is
also described in patients with normal levels and function-
ality of C1-inhibitor.3 Inhibition of PK is currently being
investigated as a prophylactic treatment in HAE. Activated
FXII converts PK into plasma kallikrein (PKa), which cleaves
high-molecular-weight kininogen (HK) thereby liberating
bradykinin. PKa can activate FXII, plasminogen, and uroki-
nase-type plasminogen activator.4 During HAE attacks, both
the coagulation cascade and fibrinolytic system seem to be
activated as evidenced by elevated prothrombin fragment
1þ2 and D-dimer levels.5 Either way, HAE patients do not
have a prothrombotic tendency.6 ►Fig. 1 gives an overview
of the functions of PKa in the kallikrein/kinin, intrinsic
coagulation, and fibrinolysis systems. Congenital PK defi-
ciency is a very rare condition that is presumed to be
asymptomatic, but has been linked to increased risk of
thrombotic events.7–10 Congenital PK deficiency is usually

detected when coagulation assays are performed, as the
activated partial thromboplastin time is prolonged in the
absence of PK.6,11 The critical roles PK play in the
kallikrein/kinin system and in in vitro coagulation are
well known, but paradoxically PK does not contribute to
in vivo hemostasis.12 The link between reduced levels of PK
and thrombotic risk is less well established. The validity of
the claim that PK deficiency increases thrombotic risks
stated in the previously mentioned case series is hampered
by the lack of adequate control groups and the risks of both
selection and publication biases. It is important to note that
the majority of individuals with PK deficiency are presumed
to go unrecognized given its largely asymptomatic nature.
Thus, the occurrence of cardiovascular or thrombotic events
in these subjects may have accounted for coagulation assays
that revealed rare observations, which are then more likely
to be published. Animal studies contradict the hypothesis of
increased thrombotic risk in the absence of PK.13–15 How-
ever, if an increased thrombotic risk of PK deficiency does
exist, this can be caused by either enhanced clot formation
via the intrinsic coagulation cascade or via decreased
fibrinolytic activity. Increased thrombin generation could
theoretically be caused by enhanced intrinsic factor XI (FXI)
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activation due to increased binding to HK, as the latter
protein is less bound to PKa in this scenario.16 Elevated FXI
levels are associated with an increased risk of arterial and
venous thromboses.17–20 However, KLKB1�/� mice have
similar FXI plasma levels compared with wild-type mice.13

In this letter, we present the results of coagulation and
fibrinolytic activity assays in samples obtained from a phase
2 trial in 22 HAE patients before and after 4 months
(hereinafter referred to as follow-up) of treatment with
either 80mg PK antisense oligonucleotides (donidalorsen)
or placebo.1 At follow-up the median percent reduction
from baseline in the donidalorsen group in PK levels was
75% (range: 36–94%) and the silica-based activated partial
thromboplastin times remained within reference values.
Coagulation and fibrinolytic activity markers at follow-up
were compared with baseline and placebo-treated patients

and the results are shown in ►Table 1. All generic and
specific assays measured at follow-up in the donidalorsen
group were comparable with baseline. None of the concen-
trations or activities in the donidalorsen group differed
significantly from the placebo group after Holm–Bonferroni
correction. A sensitivity analysis of all outcome parameters
in the randomized study population did not reveal any
statistically significant changes compared with baseline or
placebo either.

We conclude that partial PK reduction of approximately
75% in HAE patients, albeit very effective in reducing attack
frequency, does not translate into an increased coagulation
activity or a decreased fibrinolytic activity. From these
observations, one could infer that the thrombotic risk is
not increased with PK deficiency. Our results are consistent
with in vivo experiments in mice, as well as findings in HAE

Fig. 1 Overview of the functions of plasma kallikrein in the kallikrein/kinin, intrinsic coagulation, and fibrinolysis systems. Activated factor XII
(FXIIa) converts plasma prekallikrein (PK) into plasma kallikrein (PKa). PKa cleaves high-molecular-weight kininogen (HK), resulting in cleaved HK
(cHK) and bradykinin (BK). BK binds to its receptor on endothelial cells, leading to vascular leakage and thus angioedema. PKa also activates
factor XII (FXII) which activates the intrinsic coagulation cascade, starting with factor XI (FXI), which becomes activated FXI (FXIa). FXIa converts
factor X (FX) into activated FX (FXa), which converts prothrombin into thrombin and the residual product prothrombin fragment 1þ 2. Thrombin
converts fibrinogen into fibrin, which forms blood clots together with blood cells and platelets. Thrombin is inhibited by the formation of
complexes with antithrombin (TAT) and activates thrombin-activatable fibrinolysis inhibitor (TAFIa), which protects fibrin from being degraded
by the fibrinolytic system. PKa also activates urokinase-type plasminogen activator (uPA), which, together with tissue-type plasminogen
activator (tPA), is inhibited by plasminogen activator inhibitor-1 (PAI-1). Both plasminogen activators convert plasminogen into plasmin. Finally,
PKa activates plasminogen as well. Plasmin degrades fibrin thereby releasing D-dimers. Plasmin is inhibited by α2-antiplasmin thereby
generating plasmin–α2-antiplasmin complexes (PAP).
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patients treated with lanadelumab.13–15,21 The contrast in
our findings with the suggested increased thrombotic risk
postulated by Girolami et al and Barco et al7–10 may be
explained by methodological limitations or the more pro-
nounced decrease of PK levels in patients with a congenital
deficiency.We did not observe a decrease in HK activity after
targeted PK reduction. This has not been previously investi-
gated, but conversely a congenital HK deficiency has been
reported to be associated with lower PK levels.22,23 Binding
to HK may protect PKa from inactivation or clearance.24,25

Alternatively, congenital HK deficiency may be genetically
linked to inherited PK deficiency. Our study has several
notable strengths. We made paired comparisons between
baseline and follow-up measurements in the same individu-
als. Additionally, we compared our results to an adequate
control group of patients with the same condition treated
with placebo. Another benefit is that we assessed both global
measurements of the thrombin-forming and fibrinolytic
systems, as well as a more detailed examination of several
crucial enzymes and complexes within these systems. A
limitation due to the restricted use of remaining plasma
samples from a previously completed trial was the insuffi-
cient material available for all analyses in all patients. The
sampleswhich lacked adequate dataweremissing at random
and are thus not expected to have influenced the validity of
our results. A potential limitation of this study was the
approximately 75% reductions in PK levels. This has previ-
ously been shown to be sufficient for decreasing angioedema
attack rates1 and we contributed with our study to the
growing number of evidence that this amount of PK reduc-
tion does not increase thrombotic risk in HAE patients.
However, we acknowledge that in congenital PK deficiency
the PK levels are lower than in our study, meaning that our
results cannot be extrapolated one-to-one to the thrombotic
risk in patients with congenital PK deficiency.

In summary, our results do not demonstrate a procoa-
gulant state in patients with approximately 75% reduced PK
levels. This questions the earlier reported link between PK
deficiency and increased thrombotic risk. In addition, we
showed that HK activity, FXI activity, and plasminogen
activity are not hampered by significantly reduced PK
levels.
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