Synlett 2023; 34(05): 423-428
DOI: 10.1055/a-1928-2562
cluster
Special Edition Thieme Chemistry Journals Awardees 2022

Construction and Characterization of a Diphase Two-Dimensional Halogen-Bonded Organic Framework Based on a Pyrene Derivative

Guanfei Gong
a   The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, P. R. of China
,
Fei Xie
b   National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. of China
,
Lu Wang
a   The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, P. R. of China
,
Jike Wang
a   The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, P. R. of China
,
Shigui Chen
a   The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, P. R. of China
› Author Affiliations
This work was supported by National Natural Science Foundation of China (21702153 and 21801194) and Wuhan Science and Technology Bureau (whkxjsj009).


Abstract

Crystalline porous materials have received extensive attention due to their fascinating structures and wide range of applications. We report a novel diphase two-dimensional (2D) halogen-bonded organic framework (XOF-TPP) based on 1,3,6,8-tetra(pyridin-4-yl)pyrene (TPP). XOF-TPP was constructed through [N···I+···N] interactions between the pyridyl groups of TPP and iodonium cations. The formation of XOF-TPP was monitored by X-ray photoelectron spectroscopy, IR spectroscopy, powder X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy, and simulated theoretically. Small-angle X-ray scattering indicated that the XOF-TPP exists as a 2D periodic structure. This diphase 2D halogen-bonded organic framework has promise for practical applications in supramolecular functional materials.

Supporting Information



Publication History

Received: 31 May 2022

Accepted after revision: 19 August 2022

Accepted Manuscript online:
19 August 2022

Article published online:
07 October 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Yuan S, Li X, Zhu J, Zhang G, Van Puyvelde P, Van der Bruggen B. Chem. Soc. Rev. 2019; 48: 2665
    • 1b Feng X, Ding X, Jiang D. Chem. Soc. Rev. 2012; 41: 6010
    • 1c Zhang W, Chen L, Dai S, Zhao C, Ma C, Wei L, Zhu M, Chong S, Yang H, Liu L, Bai Y, Yu M, Xu Y, Zhu XW, Zhu Q, An S, Sprick RS, Little MA, Wu X, Jiang S, Wu Y, Zhang Y.-B, Tian H, Zhu W.-H, Cooper AI. Nature 2022; 604: 72
    • 2a Oh H, Kalidindi SB, Um Y, Bureekaew S, Schmid R, Fischer RA, Hirscher M. Angew. Chem. Int. Ed. 2013; 52: 13219
    • 2b Jin F, Lin E, Wang T, Geng S, Wang T, Liu W, Xiong F, Wang Z, Chen Y, Cheng P, Zhang Z. J. Am. Chem. Soc. 2022; 144: 5643
    • 2c Zeng Y, Zou R, Zhao Y. Adv. Mater. (Weinheim, Ger.) 2016; 28: 2855
    • 3a Dogru M, Handloser M, Auras F, Kunz T, Medina D, Hartschuh A, Knochel P, Bein T. Angew. Chem. Int. Ed. 2013; 52: 2920
    • 3b Wan S, Guo J, Kim J, Ihee H, Jiang D. Angew. Chem. Int. Ed. 2008; 47: 8826
    • 4a Ma H, Liu B, Li B, Zhang L, Li Y.-G, Tan H.-Q, Zang H.-Y, Zhu G. J. Am. Chem. Soc. 2016; 138: 5897
    • 4b Xu H, Tao S, Jiang D. Nat. Mater. 2016; 15: 722
  • 5 Rogge SM. J, Bavykina A, Hajek J, Garcia H, Olivos-Suarez AI, Sepúlveda-Escribano A, Vimont A, Clet G, Bazin P, Kapteijn F, Daturi M, Ramos-Fernandez EV, Xamena F, Van Speybroeck V, Gascon J. Chem. Soc. Rev. 2017; 46: 3134
    • 6a Côté AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM. Science 2005; 310: 1166
    • 6b Zhou T.-Y, Xu S.-Q, Wen Q, Pang Z.-F, Zhao X. J. Am. Chem. Soc. 2014; 136: 15885
    • 7a Rowsell JL. C, Yaghi OM. Angew. Chem. Int. Ed. 2005; 44: 4670
    • 7b Zhai Q.-G, Bu X.-H, Zhao X, Li D.-S, Feng P. Acc. Chem. Res. 2017; 50: 407
  • 8 Karmakar A, Illathvalappil R, Anothumakkool B, Sen A, Samanta P, Desai AV, Kurungot S, Ghosh SK. Angew. Chem. Int. Ed. 2016; 55: 10667
    • 9a Ji B, Zhang D, Liang R, Kang G, Zhu Q, Deng D. Cryst. Growth Des. 2020; 21: 482
    • 9b Pop L, Grosu IG, Miclăuş M, Hădade ND, Pop A, Bende A, Terec A, Barboiu M, Grosu I. Cryst. Growth Des. 2020; 21: 1045
    • 9c Zhou J, Stojanović L, Berezin AA, Battisti T, Gill A, Kariuki BM, Bonifazi D, Crespo-Otero R, Wasielewski MR. Wu Y.-L. Chem. Sci. 2021; 12: 767
    • 10a Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G. Chem. Rev. 2016; 116: 2478
    • 10b Meot-Ner M. Chem. Rev. 2005; 105: 213
    • 11a Zhang K.-D, Tian J, Hanifi D, Zhang Y, Sue AC.-H, Zhou T.-Y, Zhang L, Zhao X, Liu Y, Li Z.-T. J. Am. Chem. Soc. 2013; 135: 17913
    • 11b Tian J, Zhou T.-Y, Zhang S.-C, Aloni S, Altoe MV, Xie S.-H, Wang H, Zhang D.-W, Zhao X, Liu Y, Li Z.-T. Nat. Commun. 2014; 5: 5574
    • 11c Li Y, Dong Y, Miao X, Ren Y, Zhang B, Wang P, Yu Y, Li B, Isaacs L, Cao L. Angew. Chem. Int. Ed. 2018; 57: 729
    • 11d Chen L.-J, Humphrey SJ, Zhu J.-L, Zhu F.-F, Wang X.-Q, Wang X, Wen J, Yang H.-B, Gale PA. J. Am. Chem. Soc. 2021; 143: 8295
    • 11e Yu S.-B, Lin F.-R, Tian J, Yu J.-L, Zhang D.-W, Li Z.-T. Chem. Soc. Rev. 2022; 51: 434
    • 11f Kaur R, Sen S, Larsen MC, Tavares L, Kjelstrup-Hansen J, Ishida M, Zieleniewska A, Lynch VM, Bähring S, Guldi DM, Sessler JL, Jana A. J. Am. Chem. Soc. 2020; 142: 11497
  • 12 Lin F, Yu S.-B, Liu Y.-Y, Liu C.-Z, Lu S, Cao J, Qi Q.-Y, Zhou W, Li X, Liu Y, Tian J, Li Z.-T. Adv. Mater. (Weinheim, Ger.) 2022; 34: 2200549
  • 13 Li Y, Li Q, Miao X, Qin C, Chu D, Cao L. Angew. Chem. Int. Ed. 2021; 60: 6744
    • 14a Turunen L, Erdélyi M. Chem. Soc. Rev. 2020; 49: 2688
    • 14b Carlsson AC, Gräfenstein J, Budnjo A, Laurila JL, Bergquist J, Karim A, Kleinmaier R, Brath U, Erdélyi M. J. Am. Chem. Soc. 2012; 134: 5706
    • 14c Reiersølmoen AC, Battaglia S, Øien-Ødegaard S, Gupta AK, Fiksdahl A, Lindh R, Erdélyi M. Chem. Sci. 2020; 11: 7979
    • 14d Ward JS, Fiorini G, Frontera A, Rissanen K. Chem. Commun. 2020; 56: 8428
    • 15a Gong G, Lv S, Han J, Xie F, Li Q, Xia N, Zeng W, Chen Y, Wang L, Wang J, Chen S. Angew. Chem. Int. Ed. 2021; 60: 14831
    • 15b Gong G, Zhao J, Chen Y, Xie F, Lu F, Wang J, Wang L, Chen S. J. Mater. Chem. A 2022; 10: 10586
  • 16 Turunen L, Peuronen A, Forsblom S, Kalenius E, Lahtinen M, Rissanen K. Chem. Eur. J. 2017; 23: 11714
    • 17a Turunen L, Warzok U, Puttreddy R, Beyeh NK, Schalley CA, Rissanen K. Angew. Chem. Int. Ed. 2016; 55: 14033
    • 17b Turunen L, Warzok U, Schalley CA, Rissanen K. Chem 2017; 3: 861
    • 17c Warzok U, Marianski M, Hoffmann W, Turunen L, Rissanen K, Pagel K, Schalley CA. Chem. Sci. 2018; 9: 8343
    • 17d Zhu Y.-J, Gao Y, Tang M.-M, Rebek J, Yu Y. Chem. Commun. 2021; 57: 1543
  • 18 Vanderkooy A, Gupta AK, Földes T, Lindblad S, Orthaber A, Pápai I, Erdélyi M. Angew. Chem. Int. Ed. 2019; 58: 9012
  • 19 1,3,6,8-Tetra(pyridin-4-yl)pyrene (TPP) 1,3,6,8-Tetrabromopyrene (520 mg, 1.0 mmol), pyridin-4-ylboronic acid (500 mg, 4.0 mmol), DMF (150 ml), and K2CO3 (25 mg, 0.183 mmol) were added to a flask and degassed by bubbling with Ar for 30 min. Pd(PPh3)4 (20 mg, 0.0173 mmol) was added, and the solution was degassed for a further 10 min and then heated to 145 °C for 48 h. After cooling, the mixture was poured into H2O (500mL) and the resulting mixture was stirred for 30 min. The precipitate was collected by filtration and washed successively with H2O (100 mL), MeOH (100 mL), and CH2Cl2 (100 mL), then dried under reduced pressure to give a pale-green solid; yield: 216.8 mg (42%). 1H NMR (600 MHz, 4:1 DMSO-d 6–TFA, 298 K): δ = 9.155 (d, J = 6.0 Hz, 8 H), 8.445 (d, J = 6.0 Hz, 8 H), 8.430 (s, 2 H), 8.360 (s, 4 H).
  • 20 Aitchison CM, Kane CM, McMahon DP, Spackman PR, Pulido A, Wang X, Wilbraham L, Chen L, Clowes R, Zwijnenburg MA, Sprick RS, Little MA, Day GM, Cooper AI. J. Mater. Chem. A 2020; 8: 7158
  • 21 Naumkin AK, Kraut-Vass A, Gaarenstroom SW, Powell CJ. NIST X-ray Photoelectron Spectroscopy Database. 2012 https://srdata.nist.gov/xps/Default.aspx (accessed Sept. 14, 2022)
    • 22a Zhang W, Zhou L, Shi J, Deng H. J. Colloid Interface Sci. 2017; 496: 167
    • 22b Sherwood PM. A. J. Chem. Soc., Faraday Trans. 2 1975; 72: 1805
    • 22c Song S, Tu J, He Z, Hong F, Liu W, Chen J. Appl. Catal., A 2010; 378: 169
    • 22d Kumanek B, Przypis Ł, Wróbel PS, Krzywiecki M, Walczak KZ, Janas D. Appl. Nanosci. 2019; 10: 529
  • 23 Xu H, Yan J, Xu Y, Song Y, Li H, Xia J, Huang C, Wan H. Appl. Catal., B 2013; 129: 182
  • 24 Huang S, Xu Y, Chen Z, Xie M, Xu H, He M, Li H, Zhang Q. RSC Adv. 2015; 5: 71035
    • 25a Lu S.-H, Li Y, Yang S.-X, Zhao R.-D, Lu Z.-X, Liu X.-L, Qin Y, Zheng L.-Y, Cao Q.-E. Inorg. Chem. 2019; 58: 11793
    • 25b Nimax PR, Reimann D, Sünkel K. Dalton Trans 2018; 47: 8476
    • 26a Zhang G, Hong Y.-l, Nishiyama Y, Bai S, Kitagawa S, Horike S. J. Am. Chem. Soc. 2019; 141: 1227
    • 26b Diwakara SD, Ong WS. Y, Wijesundara YH, Gearhart RL, Herbert FC, Fisher SG, McCandless GT, Alahakoon SB, Gassensmith JJ, Dodani SC, Smaldone RA. J. Am. Chem. Soc. 2022; 144: 2468
    • 27a Zuo P, Li Y, Wang A, Tan R, Liu Y, Liang X, Sheng F, Tang G, Ge L, Wu L, Song Q, McKeown NB, Yang Z, Xu T. Angew. Chem. Int. Ed. 2020; 59: 9564
    • 27b Deng Y, Zhang Z, Du P, Ning X, Wang Y, Zhang D, Liu J, Zhang S, Lu X. Angew. Chem. Int. Ed. 2020; 59: 6082
    • 28a Krishnaraj C, Jena HS, Bourda L, Laemont A, Pachfule P, Roeser J, Chandran CV, Borgmans S, Rogge SM. J, Leus K, Stevens CV, Martens JA, Van Speybroeck V, Breynaert E, Thomas A, Van Der Voort P. J. Am. Chem. Soc. 2020; 142: 20107
    • 28b Bessinger D, Muggli K, Beetz M, Auras F, Bein T. J. Am. Chem. Soc. 2021; 143: 7351
    • 28c Liu K, Qi H, Dong R, Shivhare R, Addicoat M, Zhang T, Sahabudeen H, Heine T, Mannsfeld S, Kaiser U, Zheng Z, Feng X. Nat. Chem. 2019; 11: 994
  • 29 Yang Z, Wang Y, Liu X, Vanderlinden RT, Ni R, Li X, Stang PJ. J. Am. Chem. Soc. 2020; 142: 13689