Synlett 2023; 34(10): 1169-1173
DOI: 10.1055/a-1937-9296
cluster
Dispersion Effects

Activation Barriers for Cobalt(IV)-Centered Reductive Elimination Correlate with Quantified Interatomic Noncovalent Interactions

Lucas Loir-Mongazon
,
Carmen Antuña-Hörlein
,
Christophe Deraedt
,
Yann Cornaton
,
Centre national de la Recherche Scientifique, University of Strasbourg, GENCI-IDRIS grant 2021-A0100812469, the HPC Center of the University of Strasbourg grant g2021a248c.


Abstract

In this joint theoretical and experimental study, an analysis of weak interligand noncovalent interactions within Co(IV) [Cp*Co(phpy)X]+ cobaltacycles (phpy = 2-phenylenepyridine, κ C,N ) was carried out by using the independent gradient model/intrinsic bond strength index (IGM/IBSI) method to evaluate the dependency of the catalytically desired reductive elimination pathway (RE) on the nature of the X ligand. It is shown that the barrier for activation of the RE pathway correlates directly with the IBSI of the X-to-carbanionic chelate’s carbon. This correlation suggests that in silico prediction of which X ligand is more prone to operate an efficient Cp*Co-catalyzed directed X-functionalization of an aromatic C–H bond is attainable. A set of experiments involving various sources of X ligands supported the theoretical conclusions.

Supporting Information



Publication History

Received: 13 July 2022

Accepted after revision: 06 September 2022

Accepted Manuscript online:
06 September 2022

Article published online:
11 October 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Cornaton Y, Djukic J.-P. Acc. Chem. Res. 2021; 54: 3828
    • 1b Liptrot DJ, Power PP. Nat. Rev. Chem. 2017; 1: 0004
    • 1c Oeschger RJ, Bissig R, Chen P. J. Am. Chem. Soc. 2022; 144: 10330
    • 1d Lyngvi E, Sanhueza IA, Schoenebeck F. Organometallics 2015; 34: 805
    • 1e Johansson MP, Niederegger L, Rauhalahti M, Hess CR, Kaila VR. I. RSC Adv. 2021; 11: 425
    • 1f Meyer TH, Oliveira JC. A, Ghorai D, Ackermann L. Angew. Chem. Int. Ed. 2020; 59: 10955
    • 2a Wu F, Deraedt C, Cornaton Y, Contreras-Garcia J, Boucher M, Karmazin L, Bailly C, Djukic J.-P. Organometallics 2020; 39: 2609
    • 2b Jerhaoui S, Djukic J.-P, Wencel-Delord J, Colobert F. ACS Catal. 2019; 9: 2532
    • 2c Cornaton Y, Djukic J.-P. Phys. Chem. Chem. Phys. 2019; 21: 20486
  • 3 Lapointe D, Fagnou K. Chem. Lett. 2010; 39: 1118
  • 4 Boutadla Y, Davies DL, Macgregor SA, Poblador-Bahamonde AI. Dalton Trans. 2009; 5820
  • 5 Gallego D, Baquero EA. Open Chem. 2018; 16: 1001
  • 6 Zell D, Bursch M, Müller V, Grimme S, Ackermann L. Angew. Chem. Int. Ed. 2017; 56: 10378
    • 7a Sinha SK, Guin S, Maiti S, Biswas JP, Porey S, Maiti D. Chem. Rev. 2022; 122: 5682
    • 7b Mandal R, Garai B, Sundararaju B. ACS Catal. 2022; 12: 3452
    • 8a Yoshikai N. Synlett 2011; 1047
    • 8b Punji B, Song W, Shevchenko GA, Ackermann L. Chem. Eur. J. 2013; 19: 10605
    • 8c Yoshikai N. Bull. Chem. Soc. Jpn. 2014; 87: 843
    • 8d Yoshino T, Matsunaga S. Adv. Synth. Catal. 2017; 359: 1245
    • 8e Zhao Q, Poisson T, Pannecoucke X, Besset T. Synthesis 2017; 49: 4808
    • 8f Cheng H, Hernández JG, Bolm C. Adv. Synth. Catal. 2018; 360: 1800
    • 8g Prakash S, Kuppusamy R, Cheng C.-H. ChemCatChem 2018; 10: 683
    • 8h Ghorai J, Anbarasan P. Asian J. Org. Chem. 2019; 8: 430
    • 8i Yoshino T, Matsunaga S. Adv. Organomet. Chem. 2019; 68: 197
    • 8j Liu Y, You T, Wang H.-X, Tang Z, Zhou C.-Y, Che C.-M. Chem. Soc. Rev. 2020; 49: 5310
    • 8k Lukasevics L, Grigorjeva L. Org. Biomol. Chem. 2020; 18: 7460
    • 8l Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
    • 9a López-Resano S, Martínez de Salinas S, Garcés-Pineda FA, Moneo-Corcuera A, Galán-Mascarós JR, Maseras F, Pérez-Temprano MH. Angew. Chem. Int. Ed. 2021; 60: 11217
    • 9b Wu F, Deraedt C, Cornaton Y, Ruhlmann L, Karmazin L, Bailly C, Kyritsakas N, Le Breton N, Choua S, Djukic J.-P. Organometallics 2021; 40: 2624
  • 10 Gensch T, Klauck FJ. R, Glorius F. Angew. Chem. Int. Ed. 2016; 55: 11287
    • 11a Lefebvre C, Rubez G, Khartabil H, Boisson J.-C, Contreras-García J, Hénon E. Phys. Chem. Chem. Phys. 2017; 19: 17928
    • 11b Lefebvre C, Khartabil H, Boisson J.-C, Contreras-García J, Piquemal J.-P, Hénon E. ChemPhysChem 2018; 19: 724
    • 12a Ponce-Vargas M, Lefebvre C, Boisson J.-C, Hénon E. J. Chem. Inf. Model. 2020; 60: 268
    • 12b Klein J, Khartabil H, Boisson J.-C, Contreras-García J, Piquemal J.-P, Hénon E. J. Phys. Chem. A 2020; 124: 1850
  • 13 Yoshikai N, Asako S, Yamakawa T, Ilies L, Nakamura E. Chem. Asian J. 2011; 6: 3059
    • 14a Seyferth D. Organometallics 2009; 28: 1598
    • 14b Peltzer RM, Eisenstein O, Nova A, Cascella M. J. Phys. Chem. B 2017; 121: 4226
  • 15 Tammiku-Taul J, Burk P, Tuulmets A. J. Phys. Chem. A 2004; 108: 133
  • 16 Guo Y, Yang J, NuLi Y, Wang J. Electrochem. Commun. 2010; 12: 1671
  • 17 Norinder J, Matsumoto A, Yoshikai N, Nakamura E. J. Am. Chem. Soc. 2008; 130: 5858
    • 18a Boddie TE, Carpenter SH, Baker TM, DeMuth JC, Cera G, Brennessel WW, Ackermann L, Neidig ML. J. Am. Chem. Soc. 2019; 141: 12338
    • 18b Zhu C, Stangier M, Oliveira JC. A, Massignan L, Ackermann L. Chem. Eur. J. 2019; 25: 16382
    • 19a Szadkowska A, Gstrein X, Burtscher D, Jarzembska K, Woźniak K, Slugovc C, Grela K. Organometallics 2010; 29: 117
    • 19b Núñez A, Cuadro AM, Alvarez-Builla J, Vaquero JJ. Org. Lett. 2007; 9: 2977
  • 20 Kim J, Shin K, Jin S, Kim D, Chang S. J. Am. Chem. Soc. 2019; 141: 4137