Synlett 2023; 34(05): 457-464
DOI: 10.1055/a-1938-9550
cluster
Special Edition Thieme Chemistry Journals Awardees 2022

Visible-Light-Promoted Metal-Free 3-Arylation of 2-Aryl-2H-­indazoles with Triarylsulfonium Salts

Anzai Shi
a   Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, P. R. of China
,
Panjie Xiang
a   Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, P. R. of China
,
Yanxuan Wu
a   Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, P. R. of China
,
Chang Ge
a   Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, P. R. of China
,
Yan Liu
c   Henan International Joint Laboratory of Rare Earth Composite Material, College of Materials Engineering, Henan University of Engineering, Zhengzhou 451191, P. R. of China
,
Kai Sun
a   Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, P. R. of China
b   College of Chemistry & Materials Engineering, Huaihua University, Huaihua 418008, P. R. of China
,
Bing Yu
a   Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, P. R. of China
› Author Affiliations
We acknowledge the financial support from the Hunan Provincial Natural Science Foundation of China (2021JJ40432), and the National Natural Science Foundation of China (21971224, 22171249).


Abstract

An efficient approach for the photosynthesis of various arylated 2-aryl-2H-indazoles (38 examples) in moderate to good yields (up to 87% yield) under mild conditions was developed by employing 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN) as an inexpensive photocatalyst. This protocol features wide substrate scope, good functional group tolerance, and operational simplicity. In addition, the strategy was successfully applied to the late-stage modification of drug molecules, and the meaningful introduction of complex drugs to the skeleton of 2H-Indazole was achieved for the first time.

Supporting Information



Publication History

Received: 09 August 2022

Accepted after revision: 08 September 2022

Accepted Manuscript online:
08 September 2022

Article published online:
17 October 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Kusama H, Orita H, Sugihara H. Sol. Energy Mater. Sol. Cells 2008; 92: 84
    • 1b Sokolova AS, Yarovaya OI, Bormotov NI, Shishkina LN, Salakhutdinov NF. Chem. Biodiversity 2018; 15: e1800153
    • 1c Yang F.-F, Zhou J.-Z, Xu X.-L, Hu T, Liu J.-Q, Wu Y.-X, Wei B, Ma L.-Y. Eur. J. Med. Chem. 2022; 239: 114526
    • 1d Galanski ME, Erker T, Handler N, Lemmens-Gruber R, Kamyar M, Studenik CR. Bioorg. Med. Chem. 2006; 14: 826
    • 1e Leite L, Ramos MN, da Silva JB. P, Miranda AL. P, Fraga CA. M, Barreiro EJ. Farmaco 1999; 54: 747
    • 2a Ghosh D, Ghosh S, Ghosh A, Pyne P, Majumder S, Hajra A. Chem. Commun. 2022; 58: 4435
    • 2b Shang C, Hou Y, Meng T, Shi M, Cui G. Curr. Top. Med. Chem. 2021; 21: 363
  • 3 De Angelis M, Stossi F, Carlson KA, Katzenellenbogen BS, Katzenellenbogen JA. J. Med. Chem. 2005; 48: 1132
  • 4 Jones P, Altamura S, Boueres J, Ferrigno F, Fonsi M, Giomini C, Lamartina S, Monteagudo E, Ontoria JM, Orsale MV, Palumbi MC, Pesci S, Roscilli G, Scarpelli R, Schultz-Fademrecht C, Toniatti C, Rowley M. J. Med. Chem. 2009; 52: 7170
  • 5 Huang L.-J, Shih M.-L, Chen H.-S, Pan S.-L, Teng C.-M, Lee F.-Y, Kuo S.-C. Bioorg. Med. Chem. 2006; 14: 528
  • 6 Jang S, Vidyacharan S, Ramanjaneyulu BT, Gyak K.-W, Kim D.-P. React. Chem. Eng. 2019; 4: 1466
  • 7 Bogonda G, Kim HY, Oh K. Org. Lett. 2018; 20: 2711
  • 8 Singsardar M, Dey A, Sarkar R, Hajra A. J. Org. Chem. 2018; 83: 12694
  • 9 Ghosh P, Mondal S, Hajra A. J. Org. Chem. 2018; 83: 13618
  • 10 Kim W, Kim HY, Oh K. Org. Lett. 2020; 22: 6319
    • 11a Neogi S, Ghosh AK, Majhi K, Samanta S, Kibriya G, Hajra A. Org. Lett. 2020; 22: 5605
    • 11b Sun M, Zhou Y, Li L, Wang L, Ma Y, Li P. Org. Chem. Front. 2021; 8: 754
  • 12 Yadav L, Chaudhary S. Org. Biomol. Chem. 2020; 18: 5927
  • 13 Singsardar M, Laru S, Mondal S, Hajra A. J. Org. Chem. 2019; 84: 4543
  • 14 Aganda KC. C, Kim J, Lee A. Org. Biomol. Chem. 2019; 17: 9698
    • 15a Ohnmacht SA, Culshaw AJ, Greaney MF. Org. Lett. 2010; 12: 224
    • 15b Basu K, Poirier M, Ruck RT. Org. Lett. 2016; 18: 3218
    • 15c Belkessam F, Aidene M, Soulé J.-F, Doucet H. ChemCatChem 2017; 9: 2239
    • 15d Sadler SA, Hones AC, Roberts B, Blakemore D, Marder TB, Steel PG. J. Org. Chem. 2015; 80: 5308
    • 15e Hattori K, Yamaguchi K, Yamaguchi J, Itami K. Tetrahedron 2012; 68: 7605
    • 16a He F.-S, Bao P, Tang Z, Yu F, Deng W.-P, Wu J. Org. Lett. 2022; 24: 2955
    • 16b Chen H.-W, Lu F.-D, Cheng Y, Jia Y, Lu L.-Q, Xiao W.-J. Chin. J. Chem. 2020; 38: 1671
    • 16c Shi A, Sun K, Chen X, Qu L, Zhao Y, Yu B. Org. Lett. 2022; 24: 299
    • 16d Ma C.-H, Ji Y, Zhao J, He X, Zhang S.-T, Jiang Y.-Q, Yu B. Chin. J. Catal. 2022; 43: 571
    • 16e Li G, Yan Q, Gong X, Dou X, Yang D. ACS Sustainable Chem. Eng. 2019; 7: 14009
    • 16f Li Q, Cai B.-G, Li L, Xuan J. Org. Lett. 2021; 23: 6951
    • 16g Li Z, Wang M, Shi Z. Angew. Chem. Int. Ed. 2021; 60: 186
    • 16h Pramanik MM. D, Yuan F, Yan D.-M, Xiao W.-J, Chen J.-R. Org. Lett. 2020; 22: 2639
    • 16i Xu S, Chen H, Zhou Z, Kong W. Angew. Chem. Int. Ed. 2021; 60: 7405
    • 16j Wan Y, Wu H, Ma N, Zhao J, Zhang Z, Gao W, Zhang G. Chem. Sci. 2021; 12: 15988
    • 16k Wu H, Qiu C, Zhang Z, Zhang B, Zhang S, Xu Y, Zhou H, Su C, Loh KP. Adv. Synth. Catal. 2020; 362: 789
    • 16l Zeng F.-L, Xie K.-C, Liu Y.-T, Wang H, Yin P.-C, Qu L.-B, Chen X.-L, Yu B. Green Chem. 2022; 24: 1732
    • 16m Yan S.-S, Liu S.-H, Chen L, Bo Z.-Y, Jing K, Gao T.-Y, Yu B, Lan Y, Luo S.-P, Yu D.-G. Chem 2021; 7: 3099
    • 16n Wang M, Chen C, Ma M, Zhao B, Shi Z. J. Org. Chem. 2022; 87: 3577
    • 16o Guo S.-Y, Yang F, Song T.-T, Guan Y.-Q, Min X.-T, Ji D.-W, Hu Y.-C, Chen Q.-A. Nat. Commun. 2021; 12: 6538
    • 16p Liu T, Liu J, He J, Hong Y, Zhou H, Liu Y.-L, Tang S. Synthesis 2022; 54: 1919
    • 16q Zhao B, Chen C, Lv J, Li Z, Yuan Y, Shi Z. Org. Chem. Front. 2018; 5: 2719
    • 16r Cai B.-G, Li Q, Zhang Q, Li L, Xuan J. Org. Chem. Front. 2021; 8: 5982
    • 16s Wang S.-W, Yu J, Zhou Q.-Y, Chen S.-Y, Xu Z.-H, Tang S. ACS Sustainable Chem. Eng. 2019; 7: 10154
    • 16t Yang Y, Xu C.-H, Teng F, Li J.-H. Adv. Synth. Catal. 2020; 362: 3369
    • 16u Dinesh V, Nagarajan R. Synlett 2022; 33 in press; DOI: DOI: 10.1055/s-0040-1719936.
    • 17a Saritha R, Annes SB, Ramesh S. RSC Adv. 2021; 11: 14079
    • 17b Saritha R, Annes SB, Perumal K, Veerappan A, Ramesh S. ChemistrySelect 2021; 6: 12440
  • 18 Vidyacharan S, Ramanjaneyulu BT, Jang S, Kim D.-P. ChemSusChem 2019; 12: 2581
    • 19a Alvarez EM, Karl T, Berger F, Torkowski L, Ritter T. Angew. Chem. Int. Ed. 2021; 60: 13609
    • 19b Chen C, Wang M, Lu H, Zhao B, Shi Z. Angew. Chem. Int. Ed. 2021; 60: 21756
    • 19c Li X, Jiang M, Zhu X, Song X, Deng Q, Lv J, Yang D. Org. Chem. Front. 2022; 9: 386
    • 19d Liang L, Niu H.-Y, Li R.-L, Wang Y.-F, Yan J.-K, Li C.-G, Guo H.-M. Org. Lett. 2020; 22: 6842
    • 19e Zhu X, Jiang M, Li X, Zhu E, Deng Q, Song X, Lv J, Yang D. Org. Chem. Front. 2022; 9: 347
    • 19f Zhang Y.-L, Wang G.-H, Wu Y, Zhu C.-Y, Wang P. Org. Lett. 2021; 23: 8522
    • 19g Granados A, Cabrera-Afonso MJ, Escolano M, Badir SO, Molander GA. Chem. Catal. 2022; 2: 898
    • 19h Ye F, Berger F, Jia H, Ford J, Wortman A, Börgel J, Genicot C, Ritter T. Angew. Chem. Int. Ed. 2019; 58: 14615
    • 19i Berger F, Plutschack MB, Riegger J, Yu W, Speicher S, Ho M, Frank N, Ritter T. Nature 2019; 567: 223
    • 19j Chen C, Wang Z.-J, Lu H, Zhao Y, Shi Z. Nat. Commun. 2021; 12: 4526
    • 19k Sun K, Shi A, Liu Y, Chen X, Xiang P, Wang X, Qu L, Yu B. Chem. Sci. 2022; 13: 5659
    • 19l Zhao Y, Yu C, Liang W, Patureau FW. Org. Lett. 2021; 23: 6232
  • 20 Lansbergen B, Granatino P, Ritter T. J. Am. Chem. Soc. 2021; 143: 7909
  • 21 General Experimental Procedures for the Desired Product 3 The mixture of 2-aryl-2H-indazole (0.2 mmol), aryl sulfonium salt (0.3 mmol, 1.5 equiv.), DMAP (0.4 mmol, 2.0 equiv.), 4CzIPN (5 mol%), and MeCN (2.0 mL) were sequentially added in a 25 mL reaction vessel. Then the reaction vessel was exposed to 10 W blue LED irradiation at room temperature under N2 atmosphere for 12 h. After reaction, the solvent was evaporated under vacuum, and all the crude products were purified by silica gel chromatography (petroleum ether/ethyl acetate = 30/1) as eluting solvent to give the desired products. Methyl 2-[2-Fluoro-4′-(2-phenyl-2H-indazol-3-yl)-(1,1′-biphenyl)-4-yl]propanoate (3r) White solid (56.7 mg, 63%); mp 142.5–143.2 °C. 1H NMR (400 MHz, chloroform-d): δ = 7.83 (dd, J = 16.3, 8.6 Hz, 2 H), 7.65–7.57 (m, 2 H), 7.55–7.49 (m, 2 H), 7.49–7.33 (m, 7 H), 7.23–7.13 (m, 3 H), 3.80 (q, J = 7.2 Hz, 1 H), 3.73 (s, 3 H), 1.57 (d, J = 7.2 Hz, 3 H). 13C NMR (101 MHz, chloroform-d): δ = 174.4, 161.0, 149.1, 142.3 (d, J = 7.7 Hz), 140.2, 135.4, 135.0, 130.6 (d, J = 3.8 Hz), 129.7, 129.2 (d, J = 3.3 Hz), 129.1, 128.4, 127.1, 127.0, 126.8, 126.1, 123.7 (d, J = 3.4 Hz), 122.7, 121.8, 120.5, 117.8, 115.4 (d, J = 23.7 Hz), 52.3, 44.9, 18.4. 19F NMR (376 MHz, chloroform-d): δ = –117.19. HRMS (ESI-TOF): m/z [M + H]+ calcd for C29H24N2O2: 451.1816; found: 451.1821. 2-Phenyl-3-(4-{4-[2-(pyridin-2-yloxy)propoxy]phenoxy}phenyl)-2H-indazole (3s)White solid (72.9 mg, 71%); mp 171.1–172.3 °C. 1H NMR (400 MHz, chloroform-d): δ = 8.21–8.16 (m, 1 H), 7.82 (d, J = 8.8 Hz, 1 H), 7.73 (d, J = 8.5 Hz, 1 H), 7.62–7.57 (m, 1 H), 7.53–7.22 (m, 8 H), 7.16 (ddd, J = 8.4, 6.6, 0.7 Hz, 1 H), 7.08–7.02 (m, 2 H), 7.01–6.93 (m, 4 H), 6.91–6.86 (m, 1 H), 6.77 (d, J = 8.3 Hz, 1 H), 5.65–5.58 (m, 1 H), 4.23 (dd, J = 9.9, 5.3 Hz, 1 H), 4.11 (dd, J = 9.8, 4.8 Hz, 1 H), 1.52 (d, J = 6.4 Hz, 3 H). 13C NMR (101 MHz, chloroform-d): δ = 163.1, 158.9, 155.7, 149.2, 149.0, 146.8, 140.3, 138.7, 135.1, 131.0, 129.0, 128.3, 127.0, 126.0, 123.7, 122.4, 121.6, 121.4, 120.5, 117.7, 117.3, 116.8, 115.9, 111.7, 71.0, 69.2, 17.0. HRMS (ESI-TOF): m/z [M + H]+ calcd for C33H28N3O3: 514.2125; found: 514.2136.
  • 22 Pitzer L, Schäfers F, Glorius F. Angew. Chem. Int. Ed. 2019; 58: 8572
  • 23 Ma C, Feng Z, Li J, Zhang D, Li W, Jiang Y, Yu B. Org. Chem. Front. 2021; 8: 3286
  • 24 Shang T.-Y, Lu L.-H, Cao Z, Liu Y, He W.-M, Yu B. Chem. Commun. 2019; 55: 5408
  • 25 Wu J, Wang Z, Chen X.-Y, Wu Y, Wang D, Peng Q, Wang P. Sci. China Chem. 2020; 63: 336